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Preface

This work is concerned with the study of local and global properties
of spaces of preferences and their applications to general equilibrium,
utility and demand analysis. Differential topology and global analysis
tools are used to study the mathematical aspects of these problems, adding
further results and techniques to an approach introduced in mathematical
economics by Gerard Debreu in 1970.

Spaces of smooth, not necessarily convex or increasing, preferences
are shown here to be representable as differentiable Hilbert manifolds.
These structures on spaces of preferences are then used to extend major
results on the regularity of equilibria, based on Sard's theorem and
Abraham-Thom transversality theory, to economies where agents are
described by their preferences and endowments. Certain topological
properties of these manifolds of preferences are studied. Applications
are also given to the study of the utilities and the demands of the agents
in relation to the underlying preferences. The results point to extensions
and indicate new branches of research of both economic and mathematical
interest; these are written as suggestions or conjectures in the text.
Further possible applications of the results to the study of regularity
properties of economic aggregates are also indicated.
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Chapter 1

INTRODUCTION

a. Motivation of the Results and Discussion of lications

Preferences are primitive concepts of the theory of economic
behavior. An economic agent is usually represented by a preference
relation and certain initial data, such as a vector of endowments of
commodities, wealth, production possibilities sets, etc. Thus, spaces
of economic agents are usually represented as products of spaces of
preferences and subsets of Euclidean spaces. As the theory of econo-
mies with many agents grew, more and more structure was required
on the spaces of economic agents in order to formalize and study
certain concepts of the theory. For instance, in order to investigate
continuity of the equilibria and the core with respect to the agent's
characteristics, a topological (metric) structure was introduced on
spaces of preferences in Kannai [24], Debreu[10]and Hildenbrand [21].
For the study of certain economic aggregates, such as the aggregate
or mean demand, spaces of preferences became metric measurable
spaces [10], [21] and an economy was represented by a measure which
described a distribution of its agent's characteristics.

More recently, further investigation of certain global properties
of equilibria, such as finiteness continuity and stability, has developed
by the use of tools of differential topology, starting from the leading
article by Debreu [ 12]. In Debreu's theorem an economy is represented
by the C:l demand functions of the agents, satisfying a boundary
condition; the main result is that for almost all initial allocation of
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commodities of the n agents, there are only a finite number of equilibria
which depend continuously on the allocations. Such an economy is also
called regular. In Smale [38], the results of Debreu are extended: it

is proven that for almost all initial allocations and utility functions of

the agents, the ''extended'' equilibria (which include and may not

coincide in general with the classical equilibria) are locally unique

and stable.

The results of [12] and [38] rely on differential topology techniques;
in [12] basically the theorem of Sard, and in [ 38) Abraham-Thom's
transversality theorem and other infinite dimensional differential
topology techniques. In order to be able to use these types of techniques
one needs differentiable structures on the spaces one works on.
Smale's results extended those of Debreu, describing or parametrizing
an economy by the utilities of the agents as well as by their initial
endowments of commodities as in [12]. Utility functions are elements
of linear function spaces, which have enough structure to work on, in
particular, to apply transversality theory.

However, utilities are considered unsatisfactory as primitive
concepts [13], and the results of [ 38] cannot be translated from spaces of
utilities to spaces of preferences unless more structure for spaces of
preferences is given. This is also discussed in [16]. Furthermore, as
has been known in economic theory for a long time, the whole analysis of
equilibria and demand behavior ultimately rests on the indifference
surfaces of the preferences which are the level surfaces of the utility
functions. As pointed out, for instance, by Smale [38] the utility functions

_are mostly used as a convenient description of these indifference surfaces.

8o it seems also methodologically more adequate to work on spaces of
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preferences directly. Since Abraham-Thom's transversality theorem

is available on infinite dimensional manifolds which admit some Ck
representation into a function space [ 1], if such a representation is
obtained for spaces of preferences, one can take advantage of these
techniques and extend the results of [ 12] and [38] for economies where
the agents are identified by smooth (not necessarily convex) preferences
and initial endowments. In this work, a manifold structure for spaces

of preferences is constructed. We show that under certain conditions
spaces of preferences can be represented by certain spaces of foliations
of the commodity space; the leaves of the foliation are the indifference
surfaces of the preferences. We give here a Hilbert manifold structure
to these spaces of foliations, with the topology induced by Sobolev's
norms. Sobolev's inequality theorem, which relates the Sobolev's norms
to the Ck norms, is then used to provide the Ck representation
referred to above, and then we obtain the desired extension of the results
of regularity of equiliﬁria. of [12] and [38] for economies where agents
are identified by preferences and initial endowments.

We shall now briefly discuss possible further applications of the
manifold structures of preferences constructed here, to problems of
regularity of economic aggregates. Differential topology tools have also
proven useful for the study of regularity properties of economic aggregates.
An economy is in this context usually represented by a measure on the
space of economic agents indicating a distribution of the agent's
characteristics [21). (Such as preferences, endowments, etc.). For
the study of aggregate properties of the economy it helps to have
u'adoquto otrﬁmro on the space of agents in order to be able to use
well-studied measure theories. For instance, in [36], the admissible




spaces of preferences are restricted to have finite dimensional
manifold structures, and under these conditions, differential
topology techniques and Lebesgue-like measures on spaces of
preferences are used to obtain results of continuity of
the mean or aggregate demand. Lebesgue-like measures, which can be
defined on locally Euclidean spaces such as finite dimensional manifolds,
provide ''suitable diffused'' distributions on spaces of economic agents;
in general metric spaces there exist no counterpart for these measures.
As pointed out by Debréu [13] a natural next step would be to endow
spaces of preferences with an algebraic structure. Such an (local or
global) algebraic structure is obtained when the spaces of preferences
are given manifold structures. As discussed in [13] these structures
should be of help in the study of specific classes of measures on spaces
of agents and of certain desirable properties of economic aggregation
obtained by the use of such measures as, for example, the smoothing
effect of the aggregation of individual demands with ''suitably diffused'’
measures. The smoothness of the excess demand function of an economy
is an important property. Since the equilibria are the zeroes of the
excess demand function, its smoothness allows to use ciifferential
topology tools for the study of properties of the set of equilibria of the
economy. For a summary of the existing literature on economies with
smooth excess demands, see Debreu [14].

Another desirable property of economic aggregates that could be
studied if one has sufficient structure on the spaces of economic
agents, or preferences, is the uniqueness of equilibria, that can be
obtained by aggregation of ''suitable concentrated'' measures. This
latter point refers to the following intuitive idea: in a many agent economy
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if all agents have identical endowments and identical preferences, under
certain conditions, the economy will exhibit a unique equilibrium [ 3 ].
But such an economy can be thought of as one described by a measure
on the spaces of endowments and preferences which is completely
concentrated on (or supported by) one point. (We shall denote this
measure . ) If there is to be any continuity of the properties of the
equilibria with respect to the characteristics of the economy (the economy
in these cases is usually described by a measure on the spaces of
preferences and of endowments), then if an economy (a measure) is
""gufficiently close'' to the economy represented by Bg» One can expect
that the property of uniqueness of the equilibria will be preserved. For
the study of these continuity properties of the manifold of equilibria as
depending on the parameter or measure that represents the economy,
it is, of course, useful to have as much structure on the underlying
space as possible, in order to use limit or convergence theorems, etc.
1f the economies, for instance, are described by measures which are
absolutely continuous with respect to a certain basic measure (say a
Lebesgue measure if the underlying space has a locally Euclidean
structure), and thus can be represented by certain classes of functions,
one can, for instance, actually try to further study the ''bifurcation’
values (of these functions) that represent the economies at which the
corresponding set of equilibria changes from being a one point set to
a many point set, with corresponding implications for the stability of
the economy.

To the above motivations for the construction of differentiable
manifold structures for spaces of preferences we can also add another
provided by recent results on majority voting or aggregation rules for




which it is required to have an underlying algebraic structure of the
spaces of preferences similar to the one we construct here, see
Jean-Michel Grandmont [19].

It is of interest that one can actually endow spaces of preferences
with the differentiable manifold structures needed by the recent advances
of economic theory. However, as we shall see in what follows, these
manifolds are by nature infinite dimensional. This restricts the
validity of results such as those of [ 40] which are obtained assuming
finite dimensional differentiable manifold structures on the admissible
spaces of preferences. In general, this infinite dimensionality precludes
the use of finite dimensional differential topology techniques on spaces of
preferences, but may open up a whole new range of applications of infinite
dimensional differential topology and global analysis tools which have
been developed in recent years.

From the point of view of measure theory, Lebesgue-like measures
would not anymore be available for these spaces of preferences: infinite
dimensional Banach spaces do not admit non-trivial translation and
rotation invariant g-additive measures [37] (even bounded balls in
infinite dimensional normed space do not admit such rotation and trans-
lation invariant probability measures). However, a theory of probab-
ility measures on infinite dimensional spaces is available. In the case ‘
of Hilbert spaces, there exists certain well studied standard classes \
of rotational invariant measures, which can be described by limits
of sequences of their restrictions to finite dimensional spaces, since

Hilbert spaces have countable base. In particular, there exist

e

Gaussian-type measures called Wiener measures, commonly used in

mathematical physics, whose restrictions to finite dimensional subspaces

B,




are Gaussian distributions, and such that any rotational invariant
measure can be represented as an average of such measures on pre-
Hilbert spaces [37). These measures have many advantages; perhaps

the most noticeable one in our context is that their restrictions to finite
dimensional subspace are absolutely continuous with respect to the
Lebesgue measure and have well known properties. Thus the techniques
which require measures continuous with respect to the Lebesgue measure
for the study of aggregation problems described above can be used on
each finite dimensional subspace of the space of preferences. Since the
whole space of preferences is given here a Hilbert manifold structure,
and since Hilbert spaces have the particular property of having countable
base and can be described as a limit of an increasing sequence of sub-
spaces (this is not true of most Banach spaces), one can expect that many
aggregation results proved in finite dimensional subspaces will go through
in the limit of a sequence of subspaces, i.e., will carry through to the
whole space. Another idvantage of these measures is that, since they
are rotationally invariant, aggregation or voting rules for the types of
societies with the distribution of preferences they represent, would under
certain conditions be consistent with majority rules [19].

With such measure theoretical applications in mind, we study
Hilbert manifold structures on spaces of preferences, induced by
Sobolev's norms [39]. In order to justify the introduction of Sobolev's
norms in mathematical economics, we make use of the Sobolev's
inequalities theorem [ 39] to show the relationship between these norms
and the CZk -sup norms and the Whitney topology on spaces of Ck
(k-times continuously differentiable) functions which have been used in

the mathematical economic literature. By Sobolev's theorem one can
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also show conditions under which Sobolev's spaces of preferences, while
being Hilbert spaces, and thus selfdual, are made up of preferences
representable by continuous or Ck functions, thus combining two
characteristics which are very useful for economic theory.

Further applications of the techniques and results to properties
of the utilities and the demands as depending on the underlying preferences

are given in Chapter 3 and are described in the following summary.

b. Summary of the Results

In Chapter 2, Part a, we introduce an approach to the study of
smooth prefer‘ences. We show conditions under which smooth prefer-
ences (not necessarily convex or increasing) can be represented as
subspaces of a sﬁce of retractions from the commodity space to a
submanifold, and we show conditions for this space to be not empty.

We then endow the space of preferences with a Sobolev norm, and show
that it is a Hilbert manifold. We discuss other norms and their relations.
In Part b, we show that the subspace of the above space of preferences
which give codimension-one foliations of the commodity space is a
submanifold. Subspaces of convex and increasing smooth preferences
are also shown to be submanifolds. We then indicate how to extend these
results to a much larger space of preferences, represented by all
codimension one foliations of the commodity space given as retractions
into some (not necessarily the same) smooth one dimensional submanifold
of the commodity space. The above is restricted to compact commodity

spaces,
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In Chapter 3, Part b, we give sufficient conditions for a manifold
of preferences constructed in Chapter 2 to be a contractible space. We
show that the results of Chapter 2 can be extended to produce manifold
structures for spaces of many-agents preferences, which are described
each by a retraction onto a submanifold of the commodity space, more
general and of higher dimension than those of Chapter 2. These
preferences also define foliations of the commodity space, of higher
codimension.

We study properties of the indifference surfaces of the utilities
as related to the critical points of the vector field normal to the foliation
determined by the underlying preference at the boundary of the commodity
space. We study genericity of the set of preferences (not necessarily
convex) that yield (:l demand functions.

In Chapter 4 we extend the results on genericity of regular
economies of Debreu and Smale to economies with agents represented
by their preferences and endowments, and discuss extensions to a non-
compact commodity space, the positive quadrant in R™. Existence of
equilibria is briefly discussed. Necessary conditions for the local
uniqueness and continuity with respect to the parameters of the equilibria

are also given.
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Chapter 2

MANIFOLDS OF PREFERENCES

a. Introduction

We shall first discuss the geometrical motivation underlying the
construction of manifold structures for spaces of preferences. An initial
segment of this construction links with a method which has been used in
mathematical economics for representing one convex monotone preference
by one utility indicator.studied rigorously first by Hermann Wold [45], but
introduced probably long before that. We now describe our construction briefly
by means of an example. Let f be a preference representable by a monotone con-
cave utility function g defined on the unit cube. The preference is completely
described by the ''indifference surfaces'', the level surfaces of the utility g
(in the sense that two utilities with the same indifference surfaces
desc x;lbe the same preference, and two utilities with different indiffer-
ence surfaces will induce a different preference). By monotonicity
one can completely describe the set of all indifference surfaces of g
as the set of the inverse images (under g) of the (real) values
of g on points of the diagonal D of the cube. If one now maps each
point in the cube into that point of the diagonal D which has the same
utility value, one can completely describe the preference as a map
from the unit cube onto D, which is the identity when restricted to D.
With this motivation in mind, one can show that such preferences as
described above correspond to certain types of retractions from the
cube onto D, l.e., maps from the cube onto D which restricted to D
are the identity, Thus the space of such preferences can be thought
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of as a space of retractions from the cube onto the diagonal. Without
the convexity and the monotonicity constraint, but under other, much
weaker, regularity conditions on the utilities representing the prefer-
ences, one can show that certain spaces of preferences can be repres-
ented as certain subspaces of spaces of retraction from the cube to a
more general type of submanifold in the cube. One then studies these
subspaces of retractions and certain distinguished subspaces represent-
ing convex and monotone preferences and also preferences that define
codimension-one foliations of the cube (the leaves of the foliations being
the indifference surfaces of the preferences), and shows conditions under
which they are themselves representable by manifolds. We also indicate
a method to give a manifold structure to more general types of spaces

of preferences: those given by retractions of the commodity space onto
a submanifold that may be different for each preference. This is the
general plan of this chapter. We now describe the procedure in more

detail for very special éuel, to motivate the general approach.

b. An Approach to the Study of Smooth Preferences

Let 1" denote the n-dimensional unit cube in R”, and < the
standard vector order of R". In its most general form a preference f
on 1" is defined to be a subset of I"x 1™ (a,b)¢ f will also be written
s <, b. If (a,b)éEf and (b,a)€ f, we shall say that a is equiva-
lent to b, and denote it am, b. f is monotone if a< b in the
vector order of R™ implies (a,b)€ f. £ is called convex when,
forall a€l1”, theset {b€ 1" with (a,b)€ f] is convex.
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For heuristic reasons, we shall first motivate the construction
by discussing convex and monotone preferences. Then convexity and
monotonicity assumptions are subsequently shown to be inessential to
the construction and dropped, and we study more general cases.

By the results of [11],if for all a¢ I", the sets {be I" with
b <4 a}, and ({bg¢ I with a < b} are closed (in In). then there
exists a continuous real valued order preserving function g: " R,
i.e., g(b)2g(a) when (a,b)e f and g(a) =g(b) when a g b.
Such a function g is said to represent f and is also called from here
on a utility function representing the preference f. If f is convex, g
will be quasi-concave, but, as is well known [ 32], there are certain
convex preferences not representable by concave functions. If f is
monotone, g is increasing in the order < of 1”. Then one can
visualize 1" as the union of the convex sets

s sl
aet” "

where ‘f: denotes the set

{be 1™ gb) 2 ga)} ,

(see Figure 1). Let D denote the diagonal in 1", i.e., D ={ac I™

a,=a,=...= an}. I" can also be visualized as the union over a

in D of the sets I. = {be | b~f a}, where a isin D, i.e.,

R {belI% b a) = b L
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Figure 1

In a sense, the set of all '"indifference sets" I, for a in D
completely describe the preference f; if two such families of indiffer-
ence sets are not identical, they shall describe two different prefer-
ences. Thus, one can intuitively think of the space of convex monotone
preferences as being represented or described by the space of such
families of indifference sets.

We shall now look at differentiable preferences which are not
necessarily convex, but still keep the monotonicity assumption. This
monotonicity assumption will subsequently be dropped also. A prefer-
ence f shall be said to be of class Ck. or k-times continuously
differentiable (k2 2), if there exists a real valued Ck utility function
g defined on a neighborhood of I® which represents f --this definition
corresponds to Definition (ili) of Debreu [13] whea, for all x¢ I°,
Dg(x)> 0, in which case f is said to be a strictly monotone increas-

ing preference.
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As in the case of a convex preference, one can express I® as

a union of a family of indifference sets indexed by the elements of the

diagonal D, i.e.,

(1) "= U I = U (bel™bm a] . {
aegD
If g is also everywhere regular, i.e., g admits an extension
to a real valued function § on a neighborhood U of 1" such that for
all ae I, Dg(x) is of rank one, then for each r¢ R, 'i'l(r)

k

isan n-1 dimensional C* submanifold of R", or else g'l(r) =¢.

(1) can also be stated as

® = u (gl
reR

(2)

Since g is increasing, g(l,...,1)2 g(x) forall x in 1. Without
loss of generality, one can assume that g is positive valued, and that
g(0,...,0) = 0. Then, for any a in 1", there exists a point b in
D with g(a) = g(b), by continuity of g and connectedness of D.

Therefore (2) can be rewritten as

3) = u (gl
a€eD

or, equivalently,

(4) . ® = U [x:glx) =gla)} .

a€D
Furthermore, for all r in R, the set g'l(r) intersects D at
most once, since g is increasing, at a point a in D with g(a) = r.

If g is everywhere regular, the manifold 'i"l(r) is transversal
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to the manifold D in the neighborhood U of In. since g is increas-
ing. (Seethe definition in the appendix.) Thus, in general, by (4)
the ''utility function'' g which represents the preference f can be

then identified with a map o g from I" onto D, defined by
5 =b ,
(5) ¢'(l)

where be D and g(a) = g(b).

Since g is increasing, 9y is well defined, and, by the
definition of Pgr q)g(a.) =a forall a in D, Note that for each
Ck preference f there exist infinitely many utilities representing f,
actually an infinite dimensional family within the linear space of real
valued C® utility functions on I®, denoted CX(I%,Rl).! The space
of preferences can be considered as a guotient space of Ck(ln,Rl)
with the following equivalence relation: if g, and g, are in
Ck(ln.Rl). g, is equivalent to g, if and only if for each a in D,

the sets
{be 1™ g,(b) = g,(a)}
and
(be 1% g,(b) = g,(a))
are equal, i e., if 8 and g; induce the same preference of ™.
Ideally one would like to obtain a linear structure on the quotient space

Ck(ln.ll)l.. induced by or derived from the linear structure of Ck(ln. Rl).
However, the equivalence relation defined above does not have nice

le(I‘aﬂ is the space of all maps from I® onto R! which admit a ck
extension to some nelghborhood of 1M, :

Lo L C




properties, in particular it is not preserved under the linear structure
of Ck(ln, Rl) and hence the equivalence relation ~ does not induce,
even locally, a linear structure on the space of preferences or quotient
space Ck(ln. RY/~. Therefore one has to take a different line of
approach.

In the following we shall give an intuitive description of a special
case of the construction of manifolds of preferences and a description

of its structure for the special case of strictly increasing preferences.

As we saw above, if g, and g, are two functions in Ck(In. Rl)
which represent the same preference f (or, in other words, are in

the same equivalence class as described above), then the correspond-

ing maps cpgl

define a one-to-one map ¢ on the space of strictly monotone increasing

and ®g defined in (5) are the same. One can thus
2

Ck preferences, with values on the space of increasing functions from

1" onto D, denoted F(I",D), given by

(6) p(f) = Pg

where g represents f. Intuitively, the idea is that in the case of an
increasing preference f there exists a one dimensional submanifold,

the diagonal D of 1%, such that '"D represents f in terms of utility',
i.e., for every a in In. there exists a point b in D with a ~ b and
if g is a function representing f, the level surfaces of g intersect

D only once (and transversally) as we sawabove, Once the value of

the function g on D is known, and the indifference surfaces of g

are known, the function g is completely determined. However, any

other increasing function on D which has the same indifference
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surfaces will yield the same preference. So what actually counts in

the representation of f is the indifference surfaces of g, or, in other
words, since g is increasing, the sets {g'l(g(a))] , for points a

in D. With the aid of these sets, the function Pg is constructed as

in (5) above, and for each preference f, if g represents f as above,
¥g is a uniquely given element within a space of maps F(ln, D). Thus
the space of preferences can be mapped injectively (not bijectively)
into F(In. D) by ¢. By a suitable transformation, the interior of D
can be mapped diffeomorphically into the real line R. Since the space
of maps F@I®, Rl ) has a linear structure induced by the addition in Rl,
this structure can induce a linear structure on F(I",D). This structure,
in turn, could be thought of as inducing a linear structure on the space
of increasing preferences: the sum of two preferences could then be

given, for instance, by that induced by ¢ and the sum in F(In. R):
fl 4 fz = ¢(f1) + ¢(fz)

" %, 3 e,
where 8; represents fi' i =1,2, However, there is a problem for
this procedure. Not any function on F(ln. D) describes what v)e
understand by a preference. We have to restrict ourselves, as we
discussed above, to a subset of maps in F(I®,D) that, restricted to
D, are the identity on D. The usual addition in F(I",D) will not
make this subset into a linear subspace of F(I® D), since if two maps
f, and £, in Fa" D) satisfy f |, =1,|, = identityon D, in
general, f,+f, as defined above, falls to satisfy ‘1*‘2'9 = identity
on D. Hence, a further argument is needed if one desires to consider

A R g
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the space of monotone preferences as a linear subspace of F(In,D).

This is discussed in Part c of this section. As for the topological
structure on the space of increasing preferences, one can similarly
consider one induced by the injection map ¢, from a suitable norm on
F(In,Rl). chosen from some of the norms which are available in linear
function spaces. Even if a linear, or locally linear, structure is given
to the space of preferences, one still has the problem that the topology
induced on the space of preferences by that on F(In.Rl) may fail to
make the subspace of preferences complete. Linear subspaces of
complete infinite dimensional spaces may fail to be closed. Hence, to
the study of the algebraic properties of the space one has to add that of

a natural and adequate topology with the desired properties. This is

done in Part c of this section. As is frequently the case with infinite
dimensional spaces, the adequate choice of topologies is a delicate

point here. In addition to the mathematical adequacy criteria, one should
also add economic considerations. It is desirable that the space of prefer-
ences has a norm and is complete, so thatone starts by trying with norms that
yield Banach space structures. But the map ¢ between the space of
preferences and the space of utilities imposes a restriction from the
economic viewpoint: topologies on spaces of utility functions have already
been introduced in the literature, and they were chosen so as to conform
to economic intuition and also to provide the right mathematical frame-
work for the study of certain economic properties, for instance, in
general equilibrium theory [ 38]. So one should look for norms on spaces
of preferences which, through ¢, relate adequately to the norms already

in use in the literature for spaces of utilities. Furthermore, if, as
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discussed in the Introduction, one would like to have inner products
also, at least locally, on spaces of preferences, i.e., to give the spaces
of preferences a Hilbert manifold structure, then a closer look at the
procedure is required to justify the introduction of such further structure.
As the above indicates, the existence of a diffeomorphism from 5)
into R is important for the construction of the topological and the linear
structure of preferences on I®. As we see in what follows, under certain
conditions, when the preferences considered are more general prefer-
ences of type Ck, no longer assumed to be increasing, D can be
replaced by a more general type of one dimensional submanifold I of
In, i diffeomorphic to a segment, and a similar construction can be
obtained. Furthermore, we shall indicate how a still more general
space of preferences can be given a manifold structure, one in which
each agent might have a different submanifold playing the role of D.
With all the above considerations in mind, we now proceed to the
technical aspects and proofs. For definitions and other complementary

material, see also the appendix.

©. Construction of Hilbert Manifold Structures for Spaces of

Preferences

In order to simplify matters in the following we shall assume that
the commodity space S is a ball B"cR", with two "antipodal"
points distinguished in its boundary, which shall be assumed to be the
points (0,...,0) and (1,...,1), denoted 0 and 1, respectively.
This is done for technical reasons: B" has the structure of a C”
manifold with boundary, while I" does not. The results can then be

R Ty
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translated to any subset of R" homeomorphic to Bn, and whose
interior is C% diffeomorphic to the interior of B™ --such as, for
instance, S = 1", We now need some definitions. For complementary
mathematical definitions, see also the appendix,

If N is an n-dimensional smooth compact manifold, the Sobolev

norm " y “s is defined on the space of maps C.(N,Rm) By

55 B
- T el -
N 0<|k|<s

H®(N,R™) is defined as the completion of C®(N,R™) under the
I - "s norm. These H® spaces are Hilbert spaces with the inner
product defined by
f,g) = p¥t.p%g ax
: ’g)s 4 0< Izk%s 8 5
(where Dkf denotes the k-th derivative of the map f, a linear map from

R" to R™) and are called Sobolev spaces,

The Ck norm on the space Ck(N,Rm) of k-times continuously

differentiable functions is defined by

l£ll, = sup [lf(x), D), . .., D" |
xeN

Ck(N.Rm) with the | - "k norm is a Banach space. The relation-
ship between the H*® spaces and the Ck(N.Rm) spaces is given by
Sobolev's theorem, This theorem is important to us because it will
be used to relate the Sobolev norms used here to others used in the
mathematical economic literature such as the CF norms and the

Whitney topology, and we state it here:
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SOBOLEV THEOREM (for a proof, see [39]). Let s> n/2+k.

Then HS(N, Rm) Vs Ck(N,Rm) and the inclusion is a continuous and

compact map where Ck(N,Rm) has the Ck norm,

We shall start by working with a class 4 of preferences defined

on S satisfying certain conditions: f¢ & if and only if

k

(C1) these exists a C~ (k= 2) real valued function g

defined cn a neighborhood of S representing f.

(C2) there exists a compact connected strictly < ordered
C® one dimensional neat submanifoldz I of S, with
3l = (0 =(0,...,0)Ul =(1,...,1)}] and such that
for all f in .‘?t, if g represents f, g(l)=2 g(x)=2 g(0)

for all x in S, and g ls strictly increasing along I.

Note that the preferences in & are not necessarily increasing
or convex.

The fact that I is strictly £ ordered will be used in the follow-
ing construction. However, this condition can be weakened to assume
that I is contractible; this will be proven later on.

We now show that for any preference f in 3, [ represents S

in terms of utility, much the same way that the diagonal D represents the

increasing preferences in terms of utility:

LEMMA 1, If f is a preference in 4, and g represents f,

then for any x in S, there exists a unique point b in I with
g(x) = g(b).

fl is said to be strictly < ordered as a subset of R™ when, if x and y
areinl, x#y=»x<y or y< x. A submanifold N of a manifold M is
called neat if and only if its boundary 3N is the intersection of the
boundary of M with N, 3N =N 3N, and N is also transversal to M
at 3N, (See the appendix for further definitions.)
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Proof. This is immediate from the assumptions: for any x
in S, g(1)=2 g(x)2 g(9) by (C2), and thus, by connectedness of I,
there exists a bg I with g(x) = g(b). Since g is increasing along

I by (C2), b is also unique.

Because of Lemma 1, the description of Part b which was given
for increasing preferences only applies now to all preferences in P:
any preference f in & can be thought of as a retraction from S onto L.
Thus, & can be thought of as a subset of a space &# of maps from
S onto I. We shall choose as & the Sobolev space H’(S,I),
(s>n/2+k, and k=22) defined above. Given this choice of space, if
the preferences in & are assumed to be H® (by Sobolev theorem Ckc H®,
since s > n/2+k) then #PcC H’(S,I). and this inclusion in injective.
We shall use this inclusion to induce a representation of $ as a differ-
entiable manifold. Let h:S-»1 bein H®(S,I) suchthat h restricted
to 1 is the identity mapon I, i.e., h[I =id.. Then h defines a
preference f on S as follows: forany a¢$S, letthe set of points b

in S 'preferred to a' according to f, i.e., ({b:(a,b)€ f] be given by

{be S: h(b)2 h(a) on I}

5

{bé& S: h(b) £ h(a) on I}

be the set of points in S to which a is preferred according to f,

i.e., {b€S: (b,a)éf}]. The above can be formalized by the

following exact sequence

) 0 - 2% uesn ® wan L o

e
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where R is the restriction map defined by R(h) = hll' 9: P H%(S,1)
is defined by ¢(f) = q’g € H'(S.I) defined as in (5) and (6) above:
g€ H’(S.Rl) represents f, and @8(3) =bgl, for ag¢ {g'l(g(b))}.

Since (7) is exact,

P~ 3P ~ R'l(ldl)

So, provided the structure of the spaces H'(S.I) and H'(I.l) is
appropriate for the use of infinite dimensional implicit function
theorems [27], one can then study the structure of the space & as
the inverse image under R of an element, R'l(idl). If R is
sufficiently smooth, and (idl) is a regular value of R, then @
can be shown to be a manifold by the implicit function theorem. This
procedure is intrinsic, i.e., it does not depend on the choice of the
diffeomorphism between I and Rl. This is the procedure we shall
follow.

In view of the above, we shall take as model space for the space
& the space of H® (s>n/2+k, k=2 2) retractions from S onto I:
an H® retractionis an H® map from S to I which, restricted to I,
is the identity on I. For the technical reasons discussed above, in order
to obtain a Hilbert manifold structure on the space &, we shall con-
sider Sobolev norms on the spaces of functions we work on., One can
alternatively work with Ck topologies on these function spaces. In that
case, one obtains Banach manifold structures for the spaces of prefer-
ences. This ie discussed in Part d.

We now briefly discuss the structures of the spaces H%s, D)
and H(I,I). Manifold structures for spaces of C® and C* maps
between manifolds have been introduced and studied in the mathematical

i SR v |
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literature by Eells in 1958 and Smale and Abraham in 1961; the H®

case was studied by Elliason in 1967 and by Palais in 1968, Marsden[28],

[29]and Palais [34] are good references. In the appendix a description

is given of manifold structures of spaces of maps between manifolds.

In particular, it can be seen that if M and N are smooth (c® compact

manifolds with boundary, and N a submanifold of M and 3Nc aM,

then the spaces H®(M,N) are Hilbert manifolds with the Sobolev

norms defined analogously as above, but in local charts. Sobolev

theorem also applies: If M is n-dimensional, the space HB(M,N)

is contained in Ck(M,N) when 8 > n/2+ k. So in what follows we

assume 8 > n/2+k, where n is the dimension of the commodity

space S to insure enough differentiability of the preferences we work

with; since s> n/2+k (and k2 2) the preferences will be of class CZ.
First we show that the restriction map R: HB(S,I) - H’(I,I)

defined by R(f) = flI isa C* map. Then we study R” l(idl) where

ldl denotes the identity map from I to itself. Following the previous

discussion, the subspace of R'l(idl) is identified with 9. We then

prove that ld.[ is a regular value of R, and thus & is a submanifold

of H'(S,I) which inherits the (local) Hilbert space structure of H'(S,I).
The next results are stated for general C” manifolds with boundary

M and N, N a submanifold of M. A special caseis M =S and

N =1, This is done for technical reasons that are discussed at the end"

of this section and in Chapter 3, where more general spaces of prefer-

ences are studied. For complementary definitions, see the appendix.

LEMMA 2. Let M and N C® manifolds with boundary, N

a neat submanifold of M, 3N C dM. Then the restriction map
R: H*(M,N) 5 H%(N,N) defined by R(f) = fly isa C* map.
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Proof. By the definition of H®(M,N) and the assumptions
about &, without loss of generality we can assume that M and N
are manifolds without boundary. Recall that a map ¢: H'(M.N) - H'(N,N)
is C* (forall k=2 0) at feH®(M,N) if there exists a chart (U,g,)
at f and a chart (V, ¢z) at R(f) suchthat R(U)c V and

R = 9, @ .¢I1: ¢1(U) > ¢2(V)

is Ck. Here ¢l(U) and ¢2(V) are open subsets of T°(M,N),
the model space for TI(H'(M.N)), the tangent space of H®(M,N)
at f. By definition (see appendix), if v =¢l(£) and he¢ T'(M,N),
then the value at the vector h of the linear map representing the
derivative of the map R at the point f, denoted DR(f;h), ifit

exists, must satisfy

lim  —— |R(vth)-R(v)-DR(G:h)]| = 0

uh“-b 0 “ h.ﬂ

Forany h in T'(M,N) define fﬁl(f;h) as the restrictionof h to N,
denoted h, Since h¢ T%(M,N), by definition h makes the following

diagram commutative:

(where nN is the natural projection of the tangent bundle of N, TN
onto N), i.e., h(m)eTg N forall meM. So, let BR(f:h) =h.
Then, since the diagram

TN

T

NM
f
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commutes, h belongs to T'(N.N), and it satisfies

R(v+h) -R(v) - DR(f;h) = 0, by linearityof R on T°(M,N), and

thus DR(f;h) is the derivative of R, i.e., DR(f;h) = DR(f:h),
Also, since DR(f;h) is independent of f, DR is continuous,

so that R is Cl. The same proof shows R is Ck, for all k=2 0.

PROPOSITION 1. Under the assumption of Lemma 2, the

identity map idN: N N is a regular value of the restriction map
R: H*(M,N) - H%(N,N).

Proof. Let fg H°(M,N) suchthat f|y = idy (if there

exists no retraction from M to N, ldN is a regular value by

definition). Note that if v is a tangent vector at f, i.e., ve¢ Tf(H’(M,N))

then, since by definition the diagram

/1%

M~ N

f

commutes (i.e., v(m)é¢€ Tf(m)N ), v is actually given by a family

of vector fields on N, indexed by the set f-l(n) for each n¢ N,

We shall check that for any s in 'ridN (H®(N,N)) thereisa v in
Tf(H'(M.N)) with | =idy and DR(f;iv)=s. If s¢ TMN(H'(N.N)).
then s is actually a vector field on N, since by definition, s ''covers'
the identity, i.e., s(n)¢ Tn(N)‘ In the lemma above we saw that
DR(f;v) = v/N. Let v be the element of Tf(H'(M.N)) defined by

v(im) = s(f(m)). Then ve¢ -rf(u'(u.m). since it is given by the

(right) composition of two H® maps, and DR(f;v) =s, which
completes the proof.

o .
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THEOREM 1. Under the assumptions of Lemma 2, the space
of H® retractions of M onto N form an H® Hilbert manifold.

Proof. This follows from Lemma 2 and Proposition 1 above,
the implicit function theorem for Hilbert spaces [27], and the fact
that H®(M,N) and H®(N,N) are Hilbert manifolds (see the
appendix).

Remark. The space of H® retractions from M to N is called
a Hilbert manifold because it has locally a Hilbert space structure
inherited from the (local) Hilbert space structure of H®(M, N).
However, this local Hilbert space structure depends on the choice of
charts, i.e., the inner product and the norms may vary with the
choice of charts, they are not canonical. Such spaces are also some-
times called Hilbertable spaces, i.e., spaces on which some complete

inner product exists.

5
4
&
2
,’é
®
¢
f
3
:

We next study sufficient conditions on N so that there exists a

retraction from M onto N,

LEMMA 3. Under the assumptions of Lemma 2, if N is

contractible, then there exists a continuous retraction from M to N.

Proof, Because by assumption N is a neat submanifold of M,
it has a tubular neighborhood (see [22]). This implies that the pair
(M,N) has the "homotopy extension property'', which allows standard
homotopy theory to be used [4 1]. It follows from contractibility of N

that every continuous map u: N+ N extends to a continuous map

e A e A8 0 A P
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from M to N (see, for example, [41], page 56, Exercise 6). Taking

u = idN gives the retraction.

Remarks

1. Using arguments of partitions of unity, as in Lemma 4 below,

one can then prove the existence of a C® extension.

2. A much simpler proof of Lemma 3 can be given for the special
case M =S and N =1 by using Tietze's extension theorem to prove
the existence of a continuous extension j for the map id: N- N,
j:M-> N, Lemma 3, however, can be used for constructions of spaces
of preferences on more general manifolds M, where the preferences

are represented in terme of utility by more general submanifolds than I,

We now extend Lemma 3 to prove the existence of a C® retraction.
This will imply existence of a Ck retraction, i.e., non emptiness of

the space of preferences 2.

LEMMA 4, Let M and N be as in Lemma 3. Then there

exists a C* retraction f;:M- N. ‘

M
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Proof. Let f:M o N be the continuous retraction whose
existence is proven in Lemma 3. Let W be a tubular neighborhood
of N. Let p:W- N bethe C” retractionof W onto N which
exists by [22). Let g bea C° approximationof f,g:M-N, g
sufficiently close to f so that the segment in R" given by [p(x),g(x)]

is contained in W. Take A tobea C" function from M into [0,1]

such that
A\=0 on N
A =1 outside W
Define
[ hix): M » W
by

g(x) if xeM-W
h(x) =
Ax)g(x) + (1-A(x))p(x) if xe W

when x¢N, XA =0= h(x) =p(x) =x. Since p is C* and A is C",
sois h. Sothemap f, =peh: Vo N isa C® retraction from M
to N.

From Lemmas 3 and 4 it follows, in particular

COROLLARY 1, The space of preferences & is_non-empty.

Proof. This follows immediately from Lemma 4, since by (C2)
I is strictly £ ordered, which implies that 1 is contractible by the
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classification theorem for one dimensional manifolds [30], since it

cannot have any loops.

In view of Lemma 4, we can now weaken assumption (C2) as

follows:

(C2') There exists a compact connected contractible one
dimensional neat submanifold I of S, with
31 = {0,1}, and suchthatforall f in & if g
represents f, g(1) 2 g(x) 2 g(0), forall x in
S, and g is strictly increasing along I

COROLLARY 2. Under condition (C2'), & # -

We can thus assume that the definition of & is given by (C1)
and (C2').

Note that the space of preferences & can still be defined as the
retractions from S onto I evenif 1 is not strictly < ordered in R";
one considers a C" diffeomorphism between I and (0,1) which
induces a complete order structure on I and repeats the above con-
struction to show that each element in 3 is a preferenceon S. In

view of Sobolev's theorem and Theorem 1 we can now prove:

THEOREM 2. The space of preferences & has a Hilbert
manifold structure.
Proof. Note that by Corollary 2 & is not empty. The set of

maps in H*(S,1) which are increasing along I form an open set.
This follows from the following facts. The inclusion map

(g
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i: H.(S.I) - Ck(S,l) is continuous when s > n/2+k by Sobolev's
theorem. Since k2 2, the set U of maps in Ck(S,I) which are
increasing along I (i.e., U ={ge CXS,I): ¢ +g(x)> 0 where ¢ is

the C® diffeomorphism of R and i} form an open set in Ck(S,l)

by compactness of S and I. Hence, by continuity of i, l'l(U) is

open in H'(S.!). Hence, in view of Theorem 1, since & = R‘l(idl) n i'l(U).

& is a manifold. This completes the proof.

d. Manifolds of Foliations and other Submanifolds of Preferences

In Part ¢ we proved that 3 is a Hilbertable manifold. We
shall now study the structure of certain subspaces of preferences of &
that satisfy further specifications and other larger spaces of prefer-
ences 2 which include $. One may want to consider, for instance,
as in Antonelli [2] and Debreu [13], an alternative definition of smooth
preferences as foliations of the commodity space S, i.e., smoth
regular locally integrable normalized vector fields on S. A nérmalized
(unit length) Ck (k 2 2) vector field v on S assigns to each commodity-vector
a vector which indicates the preferred direction of the agent, ina ck
manner, If such a vector field v, or preference, can be locally
described as the gradient of a (:k utility function g, then it is called
integrable. If g is regular, i.e., Dg(x) #0 forall x in S (or
equivalently, the vector field v has no singular points, i.e., itis a
regular vector field), then the indifference surfaces of g are also
called "leaves" of the follation and each describes a C*  submani-
fold of the commodity space of codimension 1. In particular, there are

no ''thick" indifference surfaces for the preference { (for instance,
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indifference surfaces of positive measure in the usual Lebesgue measure
of S). We shall first study a subspace of & made up of preferences
that satisfy this second definition,

Definition. Let ',0 be the subepace of preferences f in P
such that the normal unit vector field to the indifference surfaces of f
describe a foliation of S. Since for all f in &, f is representable
by a Ck utility function, g:S-> R, and since by assumption (C2)
(or (C2')) g is increasing along I, then g is transversal to I,
ghi, .?o coincides with the subspace of f in # representable
by C¥ functions g:S+R with Dg(x) #0 forall x in S, i.e.,
.90 is made up of the preferences in 3 which are representable by
everywhere regular utilities. Hence, for any re€ R, g'l(r) is
either an empty, or an n-1 dimensional Ck submanifold of S,
and, in particular, since k2 2, g'l(r) has Lebesgue measure zero
in S, i.e., there are no '"thick indifferences' in f. Since, for any
del, f'l(d) = g'l(r). for some r in R, and g is increasing
along I, it follows that the n-1 dimensional submanifold f'l(d).

for all d in I, is transversal to I. This transversality of the surfaces

!'l(r) and of I eliminates cases such as that of Figure 2.

-1

f(rl) i

Figure 2
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We now prove:

THEOREM 3. The space .90 of preferences in & which
define codimension one foliations of the commodity space S is an open sub-

manifold of #, and, in particular, &, hasa Hilbert manifold

structure.

Proof. In view of the above discussion, &, = {f¢ & such
that if g represents f, Dg(x) #0 for all x in S}. By Sobolev's

theorem, &P cC Cz(S.I), since s> n/2+k, and k=2 2. Since

S is compact, the set
Vv = {geC%s,1): Dgix) #0 forall x in S)
is open in CZ(S,I). By Sobolev's inequality, the inclusion map
i: H%S,D) » C%6,0)

is continuous. Hence, 1 (V) is openin H%S,I), and thus

.90 = "l(v) N$ is a submanifold of 3. This completes the proof.

We now study other important subspaces of . Let .91 be
be the space of strictly monotone increasing preferences in &, and

let .92 be the set of strictly convex preferences in .?o.

THEOREM 4. The spaces & and &, of strictly increasing
and of strictly convex preferences in & respectively, and their intersection

#, = &N P, are open submanifolds of #. In particular, they have
Hil nifo é
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Proof. Note that both -?l and .?Z are contained in @

0"
Hence, by Theorer: 3 it suffices to show that they are open subsets of
.?o. Note that .71 and .92 are open subsets of .?0 with the CZ

norm on CZ(S.I), which "0 inherits from the inclusion
8 2
.90 c < H(S,I) c C7(8,])

given by Sobolev's inequalities. By compactness of S, '?l

are both open sets with the CZ topology (see, for instance [38]).

and .92

Hence, by the same arguments of Theorems 2 and 3, 4, and .?2

1
are submanifolds of .90. This completes the proof.

We should note that all that was said about the structures of %,

Py .?l and '?Z can be rephrased for Ck norms as follows:

COROLLARY 3. If, in the above, the spaces H°(S,I) and
H®(I,1) are replaced by CX(S,I) and CN(I,I), k= 2, thenall the

results of Theorems 1, 2, 3, and 4 carry through and yield corres-
k-1

ponding Banach manifold structures of type C for the spaces of

Ck preferences defined as follows:

~

(1) # = (f satisfying (C1) and (C2), feCS,1), fe R ‘a4

(2) 50 . {fe.; and f defines a codimension one foliation of S}
(3) #, = (feP, and { is strictly increasing)

(4) ;2 = {fe;o and f is strictly convex}

(5) # =20, .

PR W ——
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e. More General Spaces of Foliations of the Commodity Space

We now indicate how to study a much larger space of preferences
than the space '?0 studied above. Detailed proofs of the results
described here will be given elsewhere, since otherwise we would
make this work too long. However, the ideas are simple and worth
pointing out here.

By definition, .?0 is given by the codimension one foliations on
the commodity space S that are retractions onto some fixed submani-

fold I. In order to indicate the dependence of &, on I we shall

0
denote it here 90(1). We have shown that conditions (Cl) and (C2)

(or (C2')) together with an appropriate choice of topologies, made

90(1) into an H® Hilbert manifold. We shall now indicate how to

extend the results to a space of smooth preferences 90’ the space of
all C* codimension one foliations of the commodity space S which

are given by retractions into some C® one dimensional neat contractible

submanifold of .S, this submanifold being allowed to vary from prefer-

ence to preference. Formally, f¢ 2, if and only if

(C3) f. is representable by a C® utility g:S- R defined
on a neighborhood of S,
and

(C4) There exists a compact connected contractible Cc” neat
one dimensional submanifold I of S, which, in general,
depends on f, with 3l = {pJu {q)} € 35, and such
that if g represents f, g(q)=2 g(x)= g(p) forall x
in S and g is increasing along I.
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The manifolds I satisfying (C4) are also called admissible. The space

2

o can be visualized as the union of the spaces .?O(I), i.e.,

2, =V
where I is any admissible submanifold.

We have now restricted ourselves to C” preferences, or prefer-
ences representable by C® utilities for the following reason: In the
proof of the manifold structure for the space 2 0 (which will be
modelled on spaces of o maps and hence it will be a Fréchet space
rather than a Banach or Hilbert space) one uses the fact that each .?O(I)
is a C® manifold, and then attempts to paste the .70(1) 's together
to get the C® structure for the union LJI 96([) = Qo. It is in this
""pasting'' that C® of the functions is required. For, if f can be
represented as a retraction from S onto Il and also a retraction from

S onto I, (i.e., f is in the intersection of -?0(11) and .?O(Iz)),

2
then the natural change of coordinates from .90(1 l) to .90(12) will be

induced by composing f in the left, with a diffeomorphism @ between

[1 and IZ’ induced by the leaves or level surfaces of f. See Figure 3

below.

Figure 3.
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The dotted lines in Figure 3 represent the leaves of f. The heavy
line is a leaf that retracts onto x, in Il’ and onto x, in lz
according to f. So if ¢ is the map that sends x, into X0 ¢ deter-
mines a C” diffeomorphism between I, and I, if f is C®, and

is a Ck map if f is Ck.

Since, for f¢ "0“1’” .,o(lz), the change of coordinates from
.90(11) to .90(12) is actually f-+ gf (itis easy to check that
indeed, ¢.f is a retractionfrom S onto I,) and since ¢ is gt
if f isa Ck preference, so willbe ¢°f. However, the map of
function spaces f . ¢ of (composition on the left) will, in general,
not be even Cl, even if ¢ is Ck. For a discussion see [28] or [29].

k“. then fogef isa c® map of

(If £ isin CX and ¢ isin C
function spaces.) However, if f and ¢ are C®, then the left

¢ composition map of function spaces fgo.f is C®. This is a main
reason for using a g (Fréchet) topology in this larger space of
foliations .Qo. The procedure described above of changes of coor-
dinates between -?o(ll) and 00(12) is actually the way of inducing
the manifold structure for &,. There is, however, a technical

detail here that cannot be overlooked. In the proof of the result that

00(!) was a Hilbert manifold we used the isomorphism

Z,0 ~ R4

and the implicit function theorem for Hilbert spaces. If ’o(l) is
modelled by o retractions, the implicit theorem is no longer valid,
since spaces of C maps are Frechet spaces (not Banach spaces)

and for these spaces the theorem is known not to be true in general,
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However, another method than the implicit function theorem is available
in this case to prove that .?o(l) is a C® Frechet manifold. Basically,

all admissible I's are diffeomorphic to the line Rl. say, through

diffeomorphisms op Lo Rl. So one can study the space -?O(I)

through the diffeomorphism ¢; as a subset of the space of C* maps
from S into Rl. This C“(S,Rl) is a linear space, with addition
induced by addition in Rl. The question is whether the .?0,
is the set of retractions from S onto I can be represented as a C”®

which

manifold. The answer is affirmative, but it requires a proof with a
method less appealing than the one we gave here by the use of the
implicit function theorem, which is not available in Fréchet spaces such

as spaces of C® maps.

Remarks.

1. Note that all the preferences in %, and in 90 are globally
integrable, i.e., representable by globally defined utilities. If v is a
locally integrable vector field which defines a monotone preference on S,
then by [ 13] and [43], it is actually globally integrable as well; this
monotonicity assumption is sufficient but clearly not necessary for the
equivalence between local and global integrability. M. Hirsch and the
author have found a necessary and sufficient condition for the equivalence
of local and global integrability of codimension one foliations on S that
will appear elsewhere., In any case, there is a difficult and important
open question here: If 2 (s a (nonempty) space of & codimension

one follations of S, under what conditions will 2 be a manifold?

WoaT Va3 L
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A subspace .?0 of 2 made up of globally integrable ones is proven
here to be a manifold--how much can one improve this result? And,
further, what can be said of the space Qk of all codimension k
foliations of a C® manifold M with boundary if 2, # @ ?

2. An extension of the results of this section to unbounded
commodity spaces seems difficult to obtain for the following reasons:
topologies such as those given by the Sobolev norm and the Ck norm
are not defined on unbounded regions unless one uses a weight factor
or finite measure as in[5]. This complicates the geometry of the spaces
at infinity. If one attempts to use Whitney topologies [38] which are
adequate for spaces of maps defined on unbounded regions, one loses
a crucial tool; the implicit function theorem is not valid any longer
since spaces of Ck maps with the Whitney topology are not Banach
spaces. However, the fact that on each compact set of the type of
the set S the results carry may be all that is needed ir many cases.
The positive orthant R: of R used frequently as a coxﬁmodity space
can be represented as a countable union of an increasing family of sets
of the type of S, and as we see in Chapter 4, this allows many results
to go through. '
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Chapter 3

PREFERENCES, UTILITIES AND DEMANDS

a. Introduction

In this chapter we study properties of manifolds of preferences
and also properties of utilities and demands of the agents in relation
to the underlying preferences. In Part b we study a topological
property of the manifold of preferences  (represented as a space
of H® retractions from the commodity space into a submanifold)
defined in Chapter 2. We show that under the conditions of Chapter 2,
& is a contractible space, and we indicate possible extensions of this
result, We also discuss more general spaces of preferences, which
we call many agent preferences. In Part c we study properties of
the utilities of the agents derived from properties of the underlying
vector fields defined by preferences in the boundary of the commodity
spaces, In Part d we also show that a generic set of preferences in
& yields demand functions which are locally well defined and of class
C  onprices and incomes. Also, for a generic class of preferences
in &, the demand vectors depend ina Cl manner on the underlying

preferences, on an open dense set of price and income vectors. These
results are local, and they are proven without convexity or monotonicity
assumptions on the preferences; for the special cases of 93 (convex

and monotone preferences) analogous global results are proved.
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b. Properties of Manifolds of Preferences

We shall now study a little of the topology of 3 and of other
related manifolds of preferences. Assume that M and N satisfy
the conditions of Lemma 2 of Chapter 2. Recall that R is the
restriction map, R: H'(M.N) > H'(N.N) given by R(f) = f/N.
Then one has the following

PROPOSITION 2. The space of H? retractions from M onto

N, R'l(ldN) is a contractible space.

Proof. First assume that N is convex. Fix a retraction

f: M5 N, For any retraction g: M- N define a homotopy
3t(x) = (1-t) g(x) + tf(x) , 0Ost<s 1 .

Define the map y: R 1(lth) xIo R'l(idN) by x(g,t) = 8 Then
x(8:0) =g, x(g,1) =f. Note that g, is in H*(M,N) andisa
retraction, i.e., gt(x) =x, for each t. Hence R'l(ldN) is
contractible.

If n isa C* diffeomorphism n: N-oNl. n induces a C*
diffeomorphism (since s > n/2 + k) between the space of H® retrac-
tions from M to N (see [29], Lemma 2.2.1), and the space of H®
retraction from M to Nl and thus the above extends to any Nl which

is diffeomorphic to a convex N. This completes the proof.

From Proposition 2 we obtain:

THEOREM 5. The space & of preferences is contractible.

it
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Proof. This follows directly from Theorem 2 in Chapter 2 and

Proposition 2 above appliedto M =S and N = I

Remark. Note that the proof of Proposition 2 is based on the
fact that N is contractible itself. A natural mathematical question
is how the topological structure of the space of retractions from M
onto N is related to the topological structure of N for more general
manifolds N. Since M is retractible onto N, the topology of M is ‘

also dependent on that of N,

As discussed in Chapter 2, Parta, & can be visualized as a
subset of maps in F(S.Rl). by mapping a preference f into
¢ £: S>R', where ¢ is s diffecmorphism between I and R
However, under the usual addition in F, induced by the addition of
the values of the map in r! (il.e., poef+degl(x) =¢ef(x) + ¢ eg(x)) Q
& is not a linear subset. But, forany 0< A< 1, the addition of
two elements f and g in @ given by the convex combination with
factor A and 1-) in F (i.e., gef + gog(x) = \pef(x)+ (1-N)p e g(x)
is an element of & since Alp f(x)) + (1-A)p g(x)) =x if x is in L.

Therefore, we have

COROLLARY 4. The space & of preferences can be identified,

for esch C* diffeomorphlem ¢: 1+ R' witha convex subset of the ¢
space of CXs,RY).

Proof. It follows from the above observations and from the fact
that the left composition of an H® map witha C* map is c® (since
s> f* k).
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The results of Theorem 5 may have interesting economic
applications as well. For instance, in dynamic models where the
time dependent or choice variables are preferences (such as optimal
advertisement models, or, more in general, political-economic
models where peoples' preferences can be influenced or made to

vary) the property that & be convex or contractible and the fact

2
2

useful to prove existence of equilibria by fixed point arguments.

that the inclusion H®c Ck is compact if s> 3 +k may be
In this light, it may be of interest to consider the following extension

of the definition of ',0 to spaces of many agent preferences .?j.

Consider a space of families of j Ck unit vector fields
v =(vjs....v;) defined on the commodity space Sc R", with j<n.
For each point x in S, the i-th vector field indicates a preferred
direction of the i-th member of the economy, i=1,...,j. Assume
that #) can be imbedded in the space of retractions R"(iaN) where
R: H'(M.N) - H'(N.N) is the restriction map, and 95 t@. This
can be deduced, for example, from analogous conditions to (Cl) and

(C2) of Chapter 2.

Definition. Let 9j be the family of such codimension n-j
foliations on S with the H”® topology inherited from the inclusion
’j c H'(M.N). These ',j define a family of preferences of j

agents on S and are thus called a space of many (j) agent preferences.

From Theorems 4 and 5 above, one has:

B T —




THEOREM 6. The space of many agent preferences ’j
with the H® structure inherited from H'(S.I) is a contractible

Hilbert manifold.

Proof. This is proved in the same way as Theorems 4 and 5.

c. Properties of Utilities

Next we discuss the structure of the hypersurface (or indifference
surfaces) of the utilities representing preferences in '90‘ It is of
interest to study when each indifference surface is connected, i.e.,
when the agent can move along the indifference surface continuously
from one bundle to any other bundle which is equally preferred. Related
questions were studied, for instance, in [25]. As the example in

Figure 4 shows, in general a retraction does not have this property.

The retraction from the square to I is indicated by the arrows
on the level surfaces. The dotted paths indicate the value of the
retraction for the level surfaces on the bottom right hand side of the

square.

T




Figure 4

We shall next study sufficient conditions for the indifference

surfaces to be connected and contractible, which are subsequently

weakened in Corollary 4.

i

The condition (2) of Proposition 3 below can be described by:
Starting at the zero indifference level and following any path in the
direction of maximal increases of utility at each point, the agent with
preference f can reach all utilities levels. Recall that &

0
subspace of preferences in J which are codimension-one foliations

is the

of the commodity space.

PROPOSITION 3. Let f be a preference in the space .
Let g:5S+ R represent f{ and assume:

(1) there exists a neighborhood U of (0,...,0) such that

Un 35 is the indifference class of (0,...,0) and

T ey
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(2) each flow line of the gradient of g starting at a point in

UN 3S meets every indifference surface of f.

Then all indifference surfaces of f are diffeomorphic to U 3S.

Proof. The indifference surfaces of f are, by definition,
transversal to the flow of the gradient of g. Furthermore, each flow
line of the gradient3 intersects each indifference surface in at most
one point. By following flow lines of the gradient vector field then,
one can induce a diffeomorphism from each indifference surface to
UN 3S. This is proved in Proposition 2.2 of V-2-6 of [22]. Thus
all indifference surfaces are Cl diffeomorphic to UnN 3S. This

completes the proof.

COROLLARY 5. If conditions (1) and (2) of Proposition 3

are satisfied, and at least one indifference surface is (connected and)

contractible, all indifference surfaces are (connected and) contractible.

Proof. It follows Proposition 3, since all indifference surfaces

are diffeomorphic.

Since the preferences in ',0 are given by regular retractions,
we shall next study what properties of f as a retraction from S onto
I are sufficient to obtain the same result. Let Df(x) denote the
derivative of the retractionmap £f:S 41 sothatif x¢ 23S,
D"as (x): T 38 » Ty I

3For a definition of a flow line, see [22] (V-2-3).
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PROPOSITION 4. Let f¢ Fy andlet g:S-+ R represent

f. Assume that there exist only two critical points of the projection

on 3S of the vector field given by the gradient of g, say (0) =(0,...,0)

and (1) =(1,...,1) and they are not degenerate. Then all indifference

surfaces of f (except (0) and (1)) are connected and contractible.

Actually, they are all Cl diffeomorphic to n-1 dimensional discs.

Proof. Recall that for f in %, any g representing f has
rank one everywhere, in a neighborhood of S. Choose one such g.
We now define an auxiliary Ck vector field: let w be a vector field

defined on a neighborhood N, of 3S such that

0

(1) on 3S, w is equal to the projection of the gradient of g.
(2) The inner product (w(x), grad g(x))= 0

For example, let w(x) be the orthogonal projection of grad g(x) on
the sphere of radius |x| concentric with S, when S is the usual
metric sphere. Take A tobea C” real valued function on a neighbor-
hood of S, 0<)\<l, and A =0 exactlyon 3S. Define v, a

A
vector field on a neighborhood of S, by

¥y = (1-A)w + A(grad g)

vx is Ck and vx is transversal to the level surfaces

(except (0) and (1)) of g, for

For all ),

(v,(p), grad g(p)) = (1-Mp)(wip), grad g(p)) + A(p)|grad gp) |

Each summand is > 0, and )\(p)|grad g(p)lz =0 onlyif Alp) =0;
but then, Ya is gridg(p) if p#(0),(1) (w(p) and grad g(p) make

an acute angle).

BT ——
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(0) (1)

Figure 5

Flow lines of vx

Note also that vx has only two singularities for all )\ (at (0) and
(1)) by construction.

There exist coordinates near (0) such that g(xl. k! .xn) = x",
In these coordinates, near (0), .BS is the graph of a function

h: R%I1,RY, thatis 35 is defined by the relation

x" = h(xl,....xn'l) ¢

and S is defined by x"> h(xl. B .xn'l).
The nondegeneracy assumption on the gradient of g| S
implies that h is a Morse function [31]. By Morse's lemma (31]

1 n-1

there are new coordinates in Rn'l. say (n',...,n ') so that

n-l)

h(ull-o..“ = (ul)z oo +(un-l)2

Therefore, the indifference surfaces near (0) are n-1 discs. The
other indifference surfaces (except (0) and (1)) are all diffeomorphic
to these by following gradient lines of 0N (similar to the proof of
Proposition 3). This completes the proof,
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Remark 1. We conjecture that in two commodities if there exist

exactly n points XpveseaX in 3S such that the gradient of g
does not have rank one, then each indifference surface of the preference

f in -?0 represented by g has at most n-1 connected components,

2. More generally, for n-dimensional commodities spaces S,
there is a connection between the topological type of the indifference
surfaces of the preference f in .?0 and the critical points of grad g

in the boundary, which can be studied using Morse theory.

We now discuss further relations between the properties of
utilities and the underlying preferences. In the next result we give a
sufficient condition for an everywhere regular Ck utility function u
on S to induce a preference f on S which is actually representable
by an element of a space .?0. for some I, i.e., a retraction from
S onto some submanifold [ of S, [ contractible and neat. We then
use this result to show an extension of Proposition 4: we give necessary
and sufficient conditions for a utility function to induce a preference

whose indifference surfaces are all connected and contractible.

Let f be a preference representable by a Ck regular utility
function u on S. Then there exist two points x and y in the boundary
of S, 3S, with the gradient of u orthogonalto 3S at x and vy,

f increasing towards the interior of S at x, and decreasing towards
the interior of S at y. This is immediate; since S is compact,

u assumes a maximum x and a minimum y in S, Since u is
everywhere regular, the gradient of u in § cannot vanish, and thus

both x and y lie in the boundary of S. Therefore, at both x and y




«50=-

the gradient of v projected on the tangent space of 35 must be zero.

If the preference f is given by a retraction of S onto a submanifold I,
the points x and y correspond to the points where 1 intersects ?S.

If f is increasing, I is the diagonal, and x =(0,...,0), y=(1,...,1).
Conversely, under certain conditions, if f is represented by a regular
Ck utility u: S » R+, then f can actually be representable by a

retraction from S onto some one dimensional (neat) submanifold I

of S.

PROPOSITION 5. Under the conditions of Proposition 4, f is

representable by a Ck retraction u from S onto a one dimensional

Ck contractible neat submanifold of S denoted I.

Proof. We shall construct the Ck manifold I using flow lines
of vector fields given by the preferenc<e. Ideally, one would want to
take as I a flow line of the gradient of a Ck function g representing
fec &#. Such a function has both its maximum and its minimum at (0)
and (1), since by the assumptions of 90' g is everywhere regular,
However, it is not necessarily true that a flow line of gradg
(denoted .1') should begin at (0) and end at (1). (See Figure 5 below. )
Instead, we modify the vector field grad g as in the proof of Proposi-
tion 4, to obtain a vector field vx. This vector field vk has a flow line
starting at (0) and ending at (1); Y\ is transversal to all level surfaces
of g other than (0) and (1) and it l'ntorucu each exactly once. Hence f
can be given as a retraction u from § onto a submanifold I, namely
a flow line of Y forsome Og)\<1l. That u isa Ck vetraction

follows from the implicit function theorem.

o i g P P e e 5 e e, e . R e A AT SNBSS,
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(0) (1)

Figure 6

Definition. f is called a Morse preference if f¢ ¥, and f
is represented by a utility function g:S 5R suchthat g laS is a
Morse function (i.e., g restricted to 3S is everywhere regular and
the zeros of grad (glas) are nondegenerate (31]). It is important to
remark that if f is a Morse preference, then every c? utility function

representing f is also a Morse function. This is because locally, the

nondegeneracy of the critical points of the gradient of the utility function on 3S
is determined by the underlying foliation (i.e., the preference relation).

THEOREM 7. Let f be a Morse preference in ¥, Ihena

neces ion for f to be representable by a Ck
retraction from the commodity space S to a one dimensional neat

contractible ck submanifold I of S, with all indifference surfaces
connected and contractible, is that the gradient of the utility u repres-
enting { has only two critical polnts (denoted (0) and (1)) when

of the ry of S.

DI i R
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Proof. Sufficiency was proven in Proposition 4. We now show
necessity.

It follows from a standard tool of algebraic topology, the Poincaré
duality theorem [41], that the boundary of a compact contractible
manifold has the same Betti numbers as a sphere of one lower dimen-
sion. Therefore, all the level surfaces except (0) and (1) on the
boundary 3S have the same Betti numbers as the n-2 sphere. It
follows from Morse theory [31] that there cannot be any other critical

points except (0) and (1) (the minimum and maximum of u) since

otherwise the Betti numbers of the level surfaces would change as a

critical level is passed which contradicts the hypothesis.

d.  Properties of Demands

In this section we study certain properties of the demands in
relation to the underlying preferences. For references, see, for
instance [3]). Recall thatif f¢ & is represented by a concave
increasing utility g:S -+ R, then for each pair (p,y), Pp a price
vector and y income, the value of the demand function at (p,y),
d(p,y) is that vector h in S which satisfies

siry e
VR K




(1) g(h) = max g(x)
x€B(p,y)

where the budget set B(p,y) of S is defined by

B(p,y) = {xeS: x'p <y}

If g is not concave or increasing, d(p,y) is in general not well
defined as a function.

The next result proves that under certain conditions, for a generic
set of preferences, the demand function d(p,y) is locally well defined
and of class Cl on prices and income.

Let P be a subset of % (the increasing preferences in .90)

pet norm. Let pe Pc Rn+. vye Yc R+,

which is bounded in the H
P and Y compact sets representing the space of prices and of incomes,
respectively. Assume that the interior of P is C® diffeomorphic to
an open ball in R™, and the interior of Y to an open interval in R,

For related results in the context of utilities rather than preferences,

see, for instance [ ¢ ).

THEOREM 8. For anopen and dense set of preferences in #,
the interior solutions of problem (1)above define locally unique C1 demand

functions d.(p,y). ona subsetof PxY which contains an open and
dense set.

e PO
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- 1
Proof. For f in & let g = ¢ of¢ Ck(S,R) represent f,

where ¢ is a C® diffeomorphism between 1 and R. Define the map

- - l
b PxPx ¥ » CE¥lsur,R%Y)

e, poy)x, ) = (g;w « )+ AP, p'x-v)

1
where )¢ R . Note that, for each p,y in Px Y, ¥(-,p,y) is

continuous as a function on # since the map

K 4
a: c%s,rY) . c*ls,rY)

defined by

g8+ 558

is continuous in the respective Ck and Ck'l topologies, and the

inclusion map
F c H%s,1) c cKs,rY)

is continuous by Sobolev's theorem. Thus { itself is a continuous
map, Consider now the restrictionof ¢ on S x BO' where Bo is
a compact interval in Rl which contains the \'s in the kernel of
W(f,p,y)x, -) for x in 5. Such B, exists by the results of [35],
page 30: forall x in S and forall (f,p,y) in FxPxY the
respective \'s in the kernel of (f,p,y)(x, ) are contained in such

a compact set. For simplicity, denote ¥(f,p,y) 'ano by Wi, p. y).
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Let Bl =8 x Bo. Thus
wep.y) € < 'BL R X Y)

Let @ be the set of maps § in CkJ(Bl. R®x Y) such that § has

zero as a regular value (denoted ¢ (h 0). Since B, is compact by

1
openness of the transversality property on compact sets [ ! ], o isan
open set.

Consider now the restriction of the c®"! porm on the subset 1
of C*¥ !B, R":Y), where I isthe imageof FxPx Y under y.
Let 8 =gN I, andgive | the relative topology. Let 7 be defined
as equal to ¢ on the domain of §, but having I as its range. Then
e =enl is open in the relative topology of I, and by continuity of
7. 7°)@ isalsoocpenin FxPxY. Notethat § ‘(o) is
contained in the set of elements in & x Px Y such that the corres-
ponding interior optimal solutions of (P) define locally a unique Cl
demand function, by the implicit function theorem (since g-‘.—i Wi, p,y)
is regular at the kernel of (f,p,y) if and only if it is invertible).
Hence, for an open set of elements in &, and an open set of price
and income pairs in P x Y the interior solutions of (1) define locally
unique ct demand functions. By Sard's theorem (see [ 1]), since
k2 2, the set of regular values of W(f,p,y) is densein R"x Y.
Then, forany ¢> 0, let (q,k)¢ ll'x'l be a regular value of the

map $(Lp.y), with [kl < ¢. Define §¢ by
;‘ f.p,y) = i, p.y) - (q,k) .

Note that $€(f,p,y) h 0 ifandonlyif (q,k) ¢ R°%Y 1isa regular
value of ¥(f,p,y). If "T'.°"Q'& and y = y-k, then
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3‘(f|PnY) - $(?n pp;)

Since S is compactand ¢ is a C® diffeomorphism, f can be taken
to be arbitrarily close to f in the Ck aorm by choosing ¢ small
enough., Since the inclusion P c H'(S.I) c Ck(s.l) is continuous,

f can be taken to be arbitrarily close to f also in the H® norm of 2.
Similarly, y can be chosen arbitrarily close to y. Hence, since 0

is a regular value of $€(f,p,y), then (f,p,y) €$'l(;) and thus
7-14@ isalsodensein F x Px Y. This completes the proof.

Remarks, 1) The results of Theorem 8 are valid in the Ck

norm of spaces of preferences (as defined in Chapter 2) as well,

2) Note that there might be elements f in P xPx Y such
that the corresponding ¢lf »y) define a (:l function, and are not
contained in :P--l(o). since %m (f,p,y) may be singular. Also,
the boundary solutions to (P) may not be contained in $'I(F).

3) If f is a convex preference, Theorem 8 yields global instead
of local results. In these case, the demand is a globally defined generi-
cally <:l function.

4) Sard's theorem actually can be used to prove that the open and
dense setin P x Y where, for an open dense set of preferences f{
in & the corresponding demand is locally a well defined Cl function,

has actually measure one (see [ 1]).

5) A natural question that remains to be answered is the nature
of the map that assigns to a convex preference f{ the corresponding
demand function d(p,y). For instance, in [10] this map is shown to
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be upper hemi-continuous, with the Hausdorff metric as the topology
given to the space of preferences (closed graph relations). The H®
norm is finer than the Hausdorff metric on the space J since itis
finer than the Ck norm if s8> n/2+k, and hence these results of
Debreu will also hold in this context. This remains to be formalized.
However, & has a much richer structure with the H® norm

than with the Hausdorff metric, with the H® norm differentiability
can be defined. Of functions defined on preferences, an

open question is whether the demand function df(p. y) depends ina
differentiable manner on the underlying preference f in .

SR -
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Chapter 4

PREFERENCES AND EQUILIBRIA

a.  Introduction

Our aim in this chapter is to show an application of the results of
Chapter 2 to the theory of general equilibrium. We shall extend results
on finiteness and stability of equilibria of Debreu[12]and Smale [38] to
economies where the agents are represented by their preferences and
endowments.

In Debreu's theorem [12]an economy is represented by the C :
demand functions of the agents, satisfying a boundary condition; for
almost all initial allocation of commodities to the n agents there are
only a finite number of equilibria, which depend continuously on the
allocations. Such an economy is also called regular.

In Smale [ 38] the results of Debreu are extended to economies
where the (2l demand functions of the agents may not be well defined,
working with Cz (not necessarily convex) utility functions of the agents
instead; it is proven that for almost all initial allocations and utility
functions of the agents, the ''extended' equilibria (which do not coincide
but, in general, contain the classical equilibria) are locally unique and
stable. Under certain boundary conditions and convexity assumptions
existence of equilibria is also proven [38].

The results of[12] and [ 38] rely on differential topology techniques;
in[12]basically the theorem of Sard, and in [ 38) Abraham-Thom's
munntlny theorem and other infinite dimensional differential

topology techniques.
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In order to be able to use these types of techniques, one needs
some differentiable structures on the spaces of parameters one works
on. Smale's results extended those of Debreu, describing an economy
by the utilities as well as by the initial endowments of commodities of
the agents - -utility functions are elements of linear function spaces,
which have enough structure to work on, in particular, tc apply trans-
versality theory, However, utilities are considered unsatisfactory as
primitive concepts [13], and the results of [ 38] cannot be translated to
spaced of preferences unless more structure for spaces of preferences
is given. Furthermore, as has been known in economic theory for a
long time, the whole analysis of equilibria and demand behavior ultimately
rests on the indifference surfaces; as pointed out by Smale [38], the
utility functions are mostly used as a convenient description of the
indifference surfaces. So it would seem also methodologically more
adequate to work on spaces of preferences directly.

Since Abraum-Tﬁom‘l transversality theorem is available on some
infinite dimensional manifolds, and we showed in Chapter 2 that spaces
of preferences can be given such structures, one can now take advantage
of the techniques and the results of Debreu [12] and Smale [38] for
economies where the agents are identified by smooth (not necessarily
convex) preferences and initial endowments. 3 This is what we intend

to do in this section.

3 th
extension only valid for spaces of convex smooth preferences of the

::‘lﬂul of [12] ioyobhi.md in H. Dierker [16] with different techniques.
Dierker states in [16] that in her work the results of [ 38] cannot be
extended in all generality for the lack of enough structure on the spaces
of preferences. Here we show how the structure given in Chapter 2 can
be used to overcome this, and also to yield generic results about
regularity of equilibria without such convexity assumptions.
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We shall now give a brief discussion of the problem. Each Clt
preference (with the definition of Chapter 2) is, in general, represented
by an infinite class of utilities. And it is the "indifference surfaces'
of the preferences (or the level surfaces of the utilities), rather than
the utility function as a whole, which determines the agent's demand
behavior. - So if an agent is identified with a preference, rather than
a utility function, a natural question is whether the results of [38] carry
over. Ina sense, an extension of the results of [12]) and [38] to prefer-
ences is intuitively clear: one would expect that the open density of the
class of utilities that yield regular equilibria on an open dense set of
initial allocations would not be all "used up' in a set of utilities which
represent very few preferences. . That this is the case for the repres-
entation of spaces of preferences given in Chapter 2, as proved below,
seems to give further support to the intuitive naturality of this repres-
entation,

This section is organized as follows: In (b) we prove that the results
of Chapter 2 can be applied to obtain a Ck representation of spaces of
Ck preferences defined on the positive cone of RY, RY +. which is
basically an inclusion map. The spaces of preferences are given here
two alternative topologies: the Whitney topology and a Sobolev norm.
Since with both these topologies the inclusion of the spaces of preferences
into utility function spaces is not an open map, one cannot ''pull back"
the results of density of regular economies of [38] on utility function
spaces to spaces of preferences--further reasonings are needed. In

‘Thst is, two utilities which represent the same preference exhibit the
same demand behavior.

5'l'lnt is, that the preferences induced by these open dense sets of

utilities are also an open dense set in the space of preferences, with
the right topologies.

R




-61-

Theorem 9 we show that the results of [ 38] can be extended in this
framework, in view of the representation of the spaces of preferences
given here. Finally, in Part c we discuss very briefly the question of
existence of equilibria in this context and necessary conditions for the
local uniqueness of equilibria, which are a partial converse to the

sufficient conditions given in Part b,

b. Genericity of Regular Economies

In this section we shall consider as a space of commodities the

positive cone of RE,
P = [x=(xl.....x”)eR" with x'2 0 for each i}

As a model for the space of preferences we shall take a space of Ck, ks>2
retractions from P to a strictly < ordered one dimensional C” submani-
fold I of P with 3l = {0} and I C® diffeomorphic to [0, =).

We shall restrict ourselves to the case of everywhere regular
retractions, the analog of "0 in Chapter 2. We next discuss
the topologies on'these spaces. The spaces of preferences are endowed
with two different topologies: a Whitney topology and an H® topology.
The Whitney topology on the space of Ck retractions from P to I is
given for any C*® diffeoraorphism p:la [0,@) by an inclusion map ¢
of Ck(F. I) into Ck(p. [0,)) induced by the composition with the map

Qp lo e,,
¢: C5®,10 +» CcK®,[0,)

is defined by

e S S
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plf) = pef

since @ is C®, g.fe CXB,[0,0)). ¢ is an injective map and the
image of CX(B,I) in CX(®,[0,s)) inherits the Whitney topology of
c"(F. [0,e)). To define the Whitney topology on ck(?.[o.-)) one gives
a family of neighborhoods of zero: a neighborhood Nh is defined for
each strictly positive continuous function h: P LR as follows:

fe N, if

sup (I&x)], [DE,.... [D"l) < bx)

for all x in P (see also [38]). Fora given g diffeomorphism
p:l- (0,») the space of everywhere regular Ck retractions from P
to I is an open subset of the space of all Ck retractions from P to I,
with the Whitney topology induced by ¢ described above. We denote
this open set .9w; it will be one model space for the space of prefer-
ences on P,

Next we study a Sobolev norm on a space of Ck retractions. We
consider a finite measure on ?, witha C* density function y such as
wix) = o.xlxl. 0< A< 1.6 The space of H® functions from P
(with the measure given by pu) Ato R is defined, as in Chapter 2, as
the completion under the | - I. norm of C®(P,[0,=)). Here the
B I. norm is defined with respect to the measure induced by y. The
space of H® retractions from P to I is similarly given a metric

derived from the |- [l' norm, and it becomes a Hilbert (or Hilbertable)

manifold (by using the implicit function theorem, see Chapter 2, Theorem 1),

By Sobolev's theorem, H*(B,I) is included in C5(B,I), if s> g/2+k
(i.e. , the functions in H'(F.l) are k-times continuously differentiable).

6'I‘hou type of measures are r!gpn naturally in certain infinite horizon
models such as those of optimal growth, see Chichilnisky |5], where
A represents a ''discount factor''.
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However, the inclusion of H® in Ck is not continuous with the Whitney
topology on Ck(F,I), For analogous reasons, the subspace '?H of
everywhere regular retractions in Hs(ﬁ,l) will not be open, and will
thus nor form a Hilbert manifold itself. However, when the preferences
are restricted to a compact region  of P, the space of preferences
with the above structure, denoted QHQ’ is a Hilbertable manifold
since it coincides with the manifold .?0 studied in Chapter 2. That

is all that is needed in order to be able to use Abraham-Thom's trans-
versality theory to extend the results of [38] to these spaces of prefer-

ences, in order to obtain results on genericity of regular economies.
We need a few technical results. See the Appendix for the defini-

tion of H°(Q, R™).

LEMMA 5 (Calderon's Extension Theorem). Let QcR! be

an open bounded set with C* boundary. If fe H°(Q,R™), then f

has an extension T ¢ H'(R‘, R™).

LEMMA 6. For any open bounded sei Q2 with C® boundary in
P the restrictionmap R: H*(F,R) 5 H*(Q,R) defined by

R(O) = f]|g

is a continuous and open map.

Proof. Note that H'(ﬂ. R) with the measure y on Q coincides
with H.(Q.R) with the Lebesgue measure on 2, since Q is compact.
Next, note that if fe H°(P,R), R(f)e¢ H*(Q,R), and that by definition

of the topology on the space ’H’ R is continuous. From Calderon's
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extension theorem (see [26), Theorem 1.1.1) we know that
if fe H'(Q,R). then there exists an extension of f to a map
?e H®(P,R). Givenany g ina neighborhood of f in H°(Q,R) with
the |-[|, norm, one can find an extension of g toa map g in
H*(P,R) suchthat [7-F[|, is as small as wanted in H°(F,R),
by using arguments of C® partitions of unity and Calderon extension
theorem.

Therefore, the image under the restriction map of an open neigh-
borhood of an element h in H‘(T”-.R), hlﬂ will be an open neigh-
borhood of h|, in H®(Q,R) with the induced |- ||, norm. Thus

the map R is open, which completes the proof.

Let Ck(F,R) be endowed with the Ck Whitney topology, and

let p be the C® diffeomorphism between I and [0,®) defined above.

Then ¢ induces, as seen above, an inclusion denoted ¢ of the space
of preferences ',W into the space Ck('ﬁ, [0,®)). The next lemma

gives a property of this inclusion.

LEMMA 7 (Left Composition of Maps). Let U be a bo

open set in RY, and h: R"+ R™ be C”". Then
w,: C5(U,R% 5 c*(U,R™)
defined by
wy(f) = het
lss C° map. Fusther,

! H*(U,R®) » H*(U,R™)
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In the following, we assume that in the definition of '?H'
s> g4/2+k and kz22. Let 2 be a bounded region with a smooth
boundary and assume that 3(INN)c 3N. Let INN be denoted IQ.
and let "HQ denote the space of everywhere regular retractions
from 2 onto IQ with the H® norm. (This space coincides with the
space of preferences .90 discussed in Chapter 2 when £ =8).

Define maps

k
Qn. '9HQ - C(Q,R)

QQ(f) = ¢of .

Definition. A map p: A > Cr(X,Y) from a manifold A to the
space of C* maps from a C® manifold X toa C® manifold Y is
calleda C* representation if the evaluation map evp: AxX 5 Y _
given by evp(a,x) =p(a)(x) for ag¢A and x¢X, isa C' map
from APx X to Y (see[l).

LEMMA 8. ¢5: #y0 » C(UR) isa C° map. Inparticular,
$q defines a c* representation of .91_“.2.

Proof. First note that if feH'(Q.IQ). then £ isa C* map
by Sobolev's inequality, since s is assumed to be strictly larger than
4/2+k, sothat g,(f) = yof isindeedin CN(@,R). By Sobolev's

theorem the inclusion j

j: HY(@,1) » cX@,1)

BN
UG =
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is continuous. Since @ is C®, the inclusion i
8 k
i: H(2,I) » C(2,R) ,

givenby i(f) = ¢ j(f), is also continuous--since it is (locally) linear,
i is also C". Finally, note that by Lemma 7 on left composition of

maps, since the map -’-ﬂ
'}
H%(Q,I,) —2—>H"(@,R)

defined by f » @£, is given by the composition with the <" map @,
then it is alsoa C” map from H'(Q,In) into H’(Q.R). Since

ig © io;Q. then q is C®. This completes the proof.

Using these lemmas we shall now show an extension of the results
of [12] and [38] on regular economies. We need some definitions. An
economy is identified by a vector of initial allocations for each of the m

agents, r = (rl. Rt rm) € (F)m, and a vector of the preferences of

each agent f = (f,... .tm)e (#)™ where P denotes either Pw

or ’H' So an economy is a pair
(r.0) € B x (# .

Nowlet S = [peP: [lp] =1} where el = 2;21 @)%, As
in [34], the space of states & is the product space &= (F)™x s,
where m is the number of agents in the economy. P™ s the space
of initial resources and S, is the space of prices. From now on, the
letter p is used to indicate prices.

R

Rt
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An attainable state of the economy (r,f) is a vector (x,p)€ &

satisfying
Ty =X

An attainable state is an extended price equilibrium if, for each i, x;
is in the set B, P = {yeP: ply) = p(ri)} and x, is a critical point of
the restriction

cp-filBl.p y

For each f =(f,... .fm) E@™, let T bea map from (#)™ into

c*Y(#,5™*) defined by

Du, (x,) Dum(xm)
[Du, ) i IDu (x )l

I (4)x,p) =

’ p »

where “=(“l""'“m) =(¢of1.....tpo£m). Let A be the diagonal in

‘s)m+ln i.e.,

A - [(Ylo..- .Ym,,,l) € (s)m+l I Yl - Yz s ym+l} »
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PROPOSITION 6. Let Z be the subset of m-tuples of preferences

m
fi (.?w) such that

r: # - ™!

is transversalto A, Then Z jis an open and dense set which contains
the m-tuples of preferences which define Ck-l demand functions.

Proof. Let CJ(F,R) be the set
{ue CX®, R): Du(x) # 0 for all x in B}
By Lemma 8 above, the map
¢: #» CXF,R)

defined as before by ¢(f) =ge+f, is C. Let ¢: (CX®, R)™ into

m+l

c® 12, 8)™*)) e defined as in [38], (Section 2) by

Dul(xl) Dum(xm)
lDu.l(xl)l IDum(xm)I :

¢ (u)(x,p) = P

thus I =ye+p, so that

ov. ® ov = ev o(p™x id)
Yod ¥y
where
$™x1a (2" x -+ CF.R)"x 2
is defined by
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P X (U ganf )i X) = @ofii . @ el %)

Thus, since by [38], Proposition 1, | isa c! representation, ev; is

a Cl representation also,by Lemma 7. Since & is compact, by

Theorem 18. 2 of [1] (openness of transversal intersection) Z is an open set.
We now check that ev, th Ao. Note that for any f in (.9w)m,

the map

. kE
(D§): TAPy) » Ty (€F, R)

al(f

is onto, since @ is a diffeomorphism, thus, since by [ 38] (Proposition 1),

the evaluation map °v¢: is transversal to A, andsince ev_= ev « (8" xid),

r v

is also transversal to A, Also, the dimensionof & is m-g +(-1,
m+l

e Vr

the codimension of A in (S) is (m+l)(t-1)-1=m-g-m+¢g -2,
Thus

m+l

siax (0, dim (P} » codla @™ 2 0

Hence, since k= 2, the conditions of Abraham and Thom's trans-
versality theorem ((19.1 of [1]) are satisfied and thus Z is also dense
in (.’w)m. The remarks after Proposition 1 of [38] apply and thus
Z contains the set of m-tuples of preferences which define c*-!

demand functions.

Let 2 be as in Lemma 3 above. Let .70 be the space of states
such that the commodity coordinates are in 2, i.e., Iq = @™ xS .
By similar arguments to those used in Proposition 1 and by applying
Lemmas 8 and 9, we obtain:




PROPOSITION 7,
(a) Let ZQ be the subset of m-tuples of preferences f defined
m+l
on Q inthe space (&)™, such that I(f): I » 8) is

transversal to A, Then 29 is an open and dense set which contains
the m-tuples of preferences which define Cl demand functions.

(b) Let Z be the subset of m-tuples of preferences in (.9“)m

such that T: & - )™

(and hence dense) set in (JH)m.

is transversal to A. Then Z is a residual

We now need further definitions. We follow the notation of [38):
For an initial allocation r, let the set of attainable states relative
to r with a budget condition be defined by:

Z, = {((mple2|Zx = 2r;, Plx) =p(r,), i=1,...,m-1}

z. contains the classical and extended price equilibria,

Let K be the subset of (‘l-’.)mx P:

K = ((re)e B)™x 2| s€z)

for £ in (#)™, define the set:
G = {(r,x,b)eK: I'{(x.b)e al

where I' is defined above.

(r,f) is called a regular economy if f€ Z and [ restricted to
G has r as a regular value, where 0: (F)™ x 2+ (F)™ is the
projection. For a regular economy the equilibria are finite and stable
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in a global sense [38]. The proof of [38] can now be applied, and one %

v

obtains the following result: S

o
'
-

o

THEOREM 9. For an open and dense set Z g_t'/;a-t_uglel of
preferences in (.9w)m. if £=(f,... .f/m)e/Z. (r,f) is a regular
economy for almost all initial anocaﬁﬂ/ r. For a residual set Z of
m-tuples of preferences in (,Qﬁf'ﬁ i f=(f,....1 )€ Z, (r.f) is
a regular economy for almost all initial allocations. !

Proof. It follows from Propositions 6and 7 above, and Proposition 4

and Theorem 2 of [38). (Note that the results of Proposition 4 of [38]
are immediately translated into this context as referring to the m-tuples
of utilities .~

u = (ulg....\lm) = (v.flloougw.im) -)

o A 5 T
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C. Existence of Equilibria and Necessary Conditions for Local

Uniqueness and Stability

We now give a v§ry brief discussion on the problem of existence
of equilibria based on the results of the Appendix of [34]. Recall that
in[38] if ug U, the set of everywhere regular utilities in Cz('lg. R)
with the boundary condition (BC) of the Appendix of [38]
and the Monotonicity Hypothesis (MH) (there is an open halfspace H
in R? and Du(x)¢ H for all x in P) are satisfied, then for the
set F of all ecoMles (r,u) in (-Is)mx U™  such that for each

agent j, “j

exists an extended price equilibrium. (See Appendix [38).)

satisfies MH and (rj,uj) satisfies (BC), there

Furthermore, if ".D is the subset of & where for each x€ P the
restriction of the second derivative DZ uj(x)lke.r Du,(x) is negative
definite, then for each economy in .?’D there exists a classical price
equilibrium,

These results extend in this context as follows:

Let ¥ be the set of economies (r,f) with ¢(f)€ &F, and XD
be the set of economies (r,f) with ¢(f)€ "D' .Then it follows from
the above theorem of [38) that for an economy (r,f) in o there exists
an extended price equilibrium, and for any economy (r,f) in N[, there
exists a classical price equilibrium.

We end this section with a brief discussion of necessary conditions
for the local uniqueness of equilibria, motivated by discussions in [ 3]

Let f: Us R? bea C:2 function representing an aggregate
demand of an economy, restricted to an open set U of the price space.

The zeros of { represent the equilibria. Let x¢f (0). As is well
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known, if Df(x) is not singular, then x is a locally unique equili-
brium. Also, as discussed in [12], [38] and in Part b above, if the
economy is regular in the sense discussed in Part b, the set of equili-
bria is a discrete set, which moves continuously with the parameters
(r,u) which define the economy r representing the initial resources,
and u the utility functions which determine the aggregate demand f.
These results follow basically from the implicit function theorem.,
However, it is known that the condition that Df(x) be nonsingular is
sufficient, but not necessary, for local uniqueness and local stability
of the equilibrium x. Here we discuss simple necessary conditions
for the equilibria to be locally unique, and related sufficient conditions
for the (nonlocally unique)equilibria to determine a submanifold of some
codimension which moves continuously with the parameters. These
conditions were studied following a remark given by Arrow and Hahn in

[ 3] to the effect that such necessary conditions seem hard to obtain,

PROPOSITION 8, Let f:UsV be C°, U and V open subsets

of R, 0cV. Thenif x¢f '(0) is s locally unique zero of f,
then either Df(x) is nonsi ar or else Df(x) changes rank at every

neighborhood of x, i.e., if rank Df(x) =k, k<n, thennotall k+1
minors of Df can vanish identically in a neighborhood of f.

Example. We first illustrate the conditions by means of an example.

Consider f: R3-» R3. Assume x¢ f-l(O) and that Df(x) is not

invertible. Then either rank Df =3 at some point in every neighbor-

hood of x, or else determinantof Df= 0 in some neighborhood of x. !

1§onthu if Df has rank k at x, then Df must have rank at least
k in some neighborhood of x.
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In the first case x is a locally unique zero by the inverse function
theorem. In the latter case, for the rank of Df not to be constantly
equal to two, the nine two by two minors of Df must have a common
zero in every neighborhood of x. Then either Df has rank 2 at
some point in every neighborhood of x, in which case x is not an
isolated zero of f, or else all two by two minors vanish identically
in some neighborhood U of x. In the latter case, for x to be an
isolated zero of f the entries of Df must have a common zero in
every neighborhood of x, because Df is not identically zero. Note
that these conditions are necessary but not sufficient for the local
uniqueness of a zero. A simple example is given by f: Rz > R,
f(x,y) = (xz -x}z. xz -xyz). (0,0) is a zero of f. Since the rank of
Df at (0,0) is zero, and rank of Df at (x,y) # (0,0) is not zero,
Df changes rank at every neighborhood of (0,0), but (0,0) is not

an isolated zero of f,

Proof. If the rank of Df is constantly equal to k (k< N)
at a neighborhood U of x, then f"(O) NU is an N-k dimensional
submanifold of U, by a version of the implicit function theorem called
also the constant rank theorem (see [36]).

COROLLARY 6. Let x be an equilibrium of the C° excess
demand function restricted to an open set U of the price space f: U R,

Then if x is a locally unigue equilibrium (x ¢ £ 1(0)), either Df is
nonsingular at x or else Df changes rank in every neighborhood of x.
If Df has constant rank k< n in some neighborhood U of x, then
the set of equilibria in U determines an n-k dimensional submanifold
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of U which moves continuously with the parameters (r,u), the

initial resources and utility functions of the economy.

Remarks. 1.The inverse function theorem admits a global version
also called the Monodromy type theorem (see [33]). This would allow
an extension of the results of Corollary 2 above to global properties of
equilibria. Other results on global uniqueness of equilibria are

discussed in [ 3].

2. The above discussion describes the structure of the
set of equilibria in some cases: where the derivative (or Jacobian)
of the excess demand function is invertible and when it has a constant
rank smaller than the dimension of the commodity space. These
results can be studied either locally or globally. The natural next
step is to study what happens to the cases in between these two and
to try to give sufficient conditions that may describe further the set
of equilibria in these other cases. These types of questions are
probably best studied by the use of tools of bifurcation theory.

SURESTER S’ 1
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APPENDIX

Definitions and Tools from Global Analysis
and Differential Topology

Definitions (See for instance [28], [34] and [ 39)).

Let < R® be an 6pen bounded set with C* boundary. Let Q@
be the closure of Q. Define CQ(Q,Rm) to be the set of functions from
Q to R™ that can be extended to a C” function on some open set in R"
containing 0.

If k is a vector of n nonnegative numbers, k= (kyyoons kn) let
|kl =Xy +ky+-+- +k . If ueC®@,R™) define DN(u) by the

formula

K K
0 (alk'u/axll... ax ")

and Dou = u.

Let ue¢ Ck(ﬂ, Rm), the space of all k-times continuously differentiable
k
maps defined on a neighborhood of @7 with values o2 R™. The C* norm

I+l ie defined by

ully, = sup (ue), ..., [D@i), 0 il s K .
x€N
For u€ C (0,R™) define

fol? - 2 0% ax
8
os|k|ss

g m
Now let H'(Q,Rm) be defined as the completion of C.(n,R ) under the

u."' norm. These H® spaces are called Sobolev spaces. Note that

Hom’ Rm) ¥ LZ‘Q, Rm).

Sobolev Theorem
(a) Let s>n/2 +k. Then H*@,R™) c cX(a,R) and the inclusion

is a continuous and compact map where Ck has the (.',k topology.
-1/2
() ¥ s>1/2, and fe H*@,R™) then f/20¢H® / , where
30 denotes the boundary of 0 .

s e - - ——
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Manifolds and Tangent Bundles

For the following definitions see for instance [22], [41],[42]and [43].
Let M be a Hausdor{f topological space such that each

point in M has a neighborhood homeomorphic to an open subset of

Euclidean space Rd. If ¢ isa homeomorphismlof a connected open

d

set UC M onto an open subset of R , the pair (U,p) is called a

coordinate system, and ¢ a coordinate map. A differentiable structure

F of class Ck (1< k<o) on M is a collection of coordinate systems
{Uy 94, o€ A} which satisfy:
() de Un =M

® o . :p;l is C* forall a, p in A.

A d-dimensional differentiable manifold of class Ck is a pair (M,.7),

where M is second countable, and &F is a ('Jk differentiable structure
with coordinate systems which map open subsets of M onto open subsets

of Rd.

~ee - ---Atangent vector -v-ata point minM is % rmapping that assigns to each function

f defined and differentiable of class Ck on a neighborhood of m, a real
number v(f) such that if (U,p) is a coordinate system on a neighborhood
of m, there exists a list of real numbers (a,..., ad) (depending on ¢)
such that

-1
d 3fep )
vif) = El a, -——-———ar‘ vio)

where r 1°°Tq s the canonical coordinate system on RY. The space
of all tangent vectors at m €M is denoted TMm and called the tangent
space of M at m, TMm turns out to be d-dimensional, with a basis

{3/ 8!,::\] . Let M bea C* manifold with differentiable structure &

Let
™M) = U ™
M ™

IA continuous one to one onto map with a continuous inverse.
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There is a natural projection
n: TM)->M, I(v) = m if veTMm ;

Let (U,9) € #, with coordinate functions y, =r 9, tsl,...,d

Define 3 :1 ' (U)» R?? by

P(v) = (x)(Mv),...,x4(I(V)), dx,(v),...dx4(v))

for all v¢ Il-l(U). % is one to one onto an open subset of R%4, Then

it can be checked that

(1) if (U,p) and (V,4)€F then Feg ! is C°.

2d

(2) the collection {¢ }(W); W openin R%%, (U,g) € #} forms

a basis for a topology on T(M) which makes T(M) into a 2d-dimensional
C® manifold. T(M) with this differentiable structure is called the

tangent bundle of M. Any point of T(M) can be written as a pair (m, v),

‘were mEM and vETM .

A Cl map f: M- N is an embedding if for all x€M

T :TxM-v Tf(x)N is one-one, and f maps M homeomorphically onto

xf
its image. Let N be a C” submanifold of M. A tubular neighborhood

of N in M is atuple (£, W,f) where € isa C  vector bundle, with
projection p, fiber E and base space N, WCE is an open neighborhood
of the zero section Z(N) of this bundle, and f: WM isa oo
embedding onto an open neighborhood of N such that feZ=1idy\. A
tubular neighborhood of N can be described by saying that there is a
neighborhood of N in which N ''looks like the zero section of a vector
bundle.'' (See for instance [22)).

Amap f:X - Y is homotopic to amap g: X +Y if there exists a
continuous map
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0:Xx1I-Y
such that
¢(x,0) = f(x) and ¢(x,1) = g(x)
for all x€ Y. ;

A topological space X is contractible when the identity map

id :X- X 1is homotopic to any constant map C,:X-»x, x€X.

Manifolds with boundary (see [22]).

A half space of R® is a subset of the form
H = {xe R" | \(x) 2 0]

where A :R®"3 R is alinear map. If A =0 then H-= Rn, otherwise

H is called a proper half space. If His proper the boundary of H is

the set oH = kernel A\, which is a linear subspace of dimension n-1.

If H= Rn, dH=¢. We now extand the definition of chart on a space

M tomeanamap §:U- R"™ which maps the open set Uc M homeo-
morphically onto an open subset of a half space in Rn, this includes all
charts defined before, since R® is itself a halfspace. Using this definition

of chart one extends the meaning of a C' differentiable structure for M to mani-

folds with boundary. Similarlyone defines a submanifold of a manifold with

boundary (see [22])).

aM (the boundary of M) is defined as follows x ¢ 3M if
x ¢ "l(al-l), for some chart 4, where H is a proper balfspace. This
condition ii independent of the chart (see [22]).

A is a peat submanifold of M if it is a submanifold and
2A=AN3M, and AhM at A,
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If Mc R™ and NcR” are manifolds with boundary, a map

f: Mo N isin H‘(M, N) when there exists an H* map
g:U-V

where Uc R™ is an open set containing M, V is an open manifold
containing N, and g/M = f.

Bundles (see for instance (42] and [ 44).
A bundle consists of a bundle space B, a base space X, a

continuous onto map p: B> X called a fibration and a space Y called
the fiber. In addition there is a group G of homeomorphism of Y and
for each x¢ X a family of homeomorphisms Gx of Y into Yx such
that

@ € € eG>€ ¢ eG and

() €€G, geG=¢€ ge G .

(iii) A family {Vj-] (called coordinate neighborhoods) of open sets

covering X such that for each j there is a homeomorphism ¢j:vj xY-p'l(Y)
(called a coordinate function) and

p-‘j(x,y)=: for x€ V,, y€Y
(W) ifthemap o, . :Y=p  (x) is defined by g, x(y) = 6(x,y)
then for each pair i,j in J and each x¢€ V‘ n Vj the homeomorphism
o;’l: 6, x: Y+ Y coincides with the operation¥of an element of G ana
for each i,j the map 83 VN Vj-’ G defined by ‘ji"" = ¢;’lx O"‘
is continuous.
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Let M be an n-dimensional manifold of class r. A foliated

structure or foliation ¥ of class r and of codimension P is defined by

giving a system of charts hi which are homeomorphisms of class r of

open sets Ui of R® over open sets of the manifold V satisfying the
following properties:

(1) Ui hi(Ui) cover M.

(2) The changes of coordinates or charts hj'l hi are local homeo-

morphisms of R™ of class r which are locally of the form

h(x,y) = (xl, vl)

(=

hy (x)
lYl = hz(XIY)

for all z in M, where

z = (x,y) = (xg,...

,xp’ YI"ln )

s W p
A vector bundie is a bundle in which the fiber is a real vector
space and G is a group of linear transformations.

A cross-section of a bundle is a continuous map f:X - B such that
Pf(x) = x for each x¢€ X.

Let n: X x' be a continuous map, and let (nl,x’, Y,p) bea
bundle with group G, The induced or pull back bundle can be defined

having base space X, fiber Y, group G and bundle space n gl

n B.
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The coordinate neighborhoods are the inverse image of those of Bl:

Vj = n'lv; the coordinate transformations are given by

g;;(x) = sjli(n(x)), x€V;NVv,.

It can be seen that this construction defines a unique bundle.
Let M be an m-manifold, meM. Let Y ¥ R™,
and let L be the group of linear transformations

of R™. Let T(M)= mLEJM Tm(M). Then there is a vector bundle
(T(M), M, Rn, p) with group structure L where p: T(M)-> M assigns
to each tangent vector its origin, called the tangent bundle. The system
of coordinates constructed for this bundle is made up of maps le:Uj x R™ T(M)
defined by tl(u,y) = osj(vj(u),y), where [Uj"j} are a system of
coordinates charts for the manifold M, and where ¢j is the.coordinate
function (see [42], pp. 15).

Let M be a compact manifold of dimension n. Let E be a vector
bundle of M and let nM ¢t E+M denote the canonical projection. Then
for each meM, Hi“ (m) = R™ for some m andthere exists a finite open cover
[Ui} of M such that each A is a chart of M and n;:(ui) 4 U; x rR™
for each i. Such a cover is called a trivialization (see [42]). A section

of a vector bundle E of M isamap h: Mo E such that HMO h= id“.
In view of the above, a section of E can locally be thought of as a

map from R" o Rm, where n is the dimension of M. One can thus put a

Hilbert structure locally on the space of sections of E whose derivatives

up to order s are in Lz (denoted H'(E))u defined above. In view of
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the compactness of M one can check that the definition of H'(E) is
independent of the trivialization for s > n/2,see [29]. However, the
Hilbert space structure depends on the choice of charts, and although the
space H.(E) is well defined, the norms may vary with the choice of

charts, (. e., they are not canonical) so that H'(E) is called a Hilbert manifold

or Hilbertible space, i. e.,a space on which some complete inner product
exists,

The Sobolev theorem has an analog for H’(E). Let M and N
be compact manifolds. Let n be the dimension of M, and ( the
dimension of N. We saythat f¢€ H'(M, N) if for any m€M and
any chart (U,p) containing m and any chart (V,{) of f(m) in N, the
map §°f+9 ! :oU)-R! isin H°@(U),RY. If s>n/2 this can be
shown to be a well defined notion independent of the choice of charts (see

" for instance [28); [29)).

Manifold of maps. Let M z2nd N be compact Riemannian manifolds, i.e.,

manifolds with a compatible metric, defined on the tangent spaces [44].

We now sketch the definition of a manifold structure for H'(Ml N)

(see for instance [28], [29] and [34])).

This is done by first finding charts for H'(M, N) and then showing
that the changes of charts are well defined (i. e., map into the right
spaces).

Let f€ H'(M, N). We first define T, H'(M, N), the tangent space
at f of H'(M, N) to be the linear space of sections X from M to TN

(TN can be identified with the vector bundle f*(TN), the ''pull back'' of
TNby f: M+ N, which is a bundle over M, as defined above) which
satisfy IIN *X =1, i.e., ¥ is a section that maps m € M into a vector
v which is in the tangent space of n = f(m).

So formally

T, HYM,N) = (X ¢H'(M, TN) : My X = £}
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there is a map denoted 'e-ﬁ: that maps the linear space 'I‘f H'(M, N)
onto a neighborhood of f in H‘(M, N), taking 0 to f, and thus can
define a chart in H®(M, N). We sketch the definition of this map.

If v € TpN, there is a unique geodesic o, through p whose

P
P
tangent vector at p is vp. Then expp(vp) = o_ (1). In general,

v
expp is a diffeomorphism from some neighborhood of 0 in TPN onto
a neighborhood of p in N. If N is compact, expp is defined over
all of TpN. This map can be extended to a map exp : TN- N such that
if v € TN then exp(v,) = exp (v ). We now define Zﬁf:'rf H%(M, N)
+ H’(M,N) by X expe X. It can be seen that ?:?Sf maps the linear
space Ti HB(M, N) onto a neighborhood of f in H'(M, N) taking 0 to
f and hence it gives a chart for H’(M, N) at f.

It can be scen that inspite of the use of the geodesics o for the

P
definition of exp, the structure is independent oi the metric, and also

... that the changes of charts are well defined and smooth_(see [28] and [29]).. . ... ..

Transversality (See, for instance [1])

1 and Mz be Cl submanifolds of a Cl manifold X, and

x€X apoint. We say Ml and M

Let M

are transversal at x, in symbols,

2
“14‘“2 at x, if and only if either x¢ M, NM, or x¢ M;NM, and

T X=TM+T M,. Wesay M, istranversalto M,, erth if and

only it M, MM, atall x in X. Let X and Y be C! manifolds and

f: XY a Cl map, and MC Y a submanifold, X and Y finite dimensional.
We say that f is transversalto M at a point x in X, in symbols,

fhM at x if and only if where y=£(x), either y¢ M or ye¢ M and

the inverse image of (Txl)(TxX) contains a complement to TyM in TyY.

We say f is transversal to M, insymbols f hM if and only if £ hM

at x, forall x¢X.

B |
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